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A practical technique is presented for determining the

probability density function and cumulative distribution function of

products, quotients, and powers of dependent random variables with

,. bivariate H-function distributions. The bivariate H-function is the

most general function of two variables, encompassing as special cases

most of the other special functions of mathematics and many of the

classical bivariate distributions. The unique properties of the

bivariate H-function make it a powerful tool in the analysis of

products, quotients, and powers of dependent random variables. ..

This dissertation first provides background material, including

history, on the algebra of random variables, definitions and

properties of double integral transforms, and theorems on

transformations of random variables. The history of bivariate-

H-functions along with two new definitions, associated properties, and

special cases of the bivariate H-functions are given. Theorems

expanding the use of double Mellin transforms to find the probability
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density function of products, quotients, and powers of dependent

random variables are given. Included in this work are bivariate

transformation theorems for products and ratios of pairwise

independent variables from two or more bivariate distributions.

The definition, special cases, and transformation theorems for

the bivariate H-function distribution are presented. These theorems

show that the probability density function of products, quotients, and

powers of dependent H-function variates is an H-function distribution

-- of one variable. Transformation theorems for products and ratios of

pairwise independent H1-function variates from two or more bivariate

H-function distributions are also given. Such combinations of

pairwise independent variables result in bivariate distributions which

are also bivariate H-functions. Formulas for finding the ordered

moments of the bivariate H-function distribution are derived. The

cumulative distribution function of a bivariate H-function

distribution is shown to be another bivariate H-function. The

cumulative distribution function is then used to derive a formula for

finding the constant of a bivariate H-function distribution.

Utilizing theorems from complex analysis of higher dimensions,

the analytic form of the bivariate H-function is analyzed by

performing the double contour integral iteratively. In this fashion

inversion is accomplished by summing the residues iteratively in each

of the complex s planes.
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CHAPTER 1

Introduction and Review

1.1 Purpose and Scope

Suppose one wishes to determine the exact probability density

function of the product of two random variables, X and Y, with known

probability density functions, fx(x) and fy(y), such that fx(x) = 0

for x < 0 and fy(y) = 0 for y < 0. If X and Y are independent, the

desired answer is the inverse Mellin transform of the product of the

Mellin transforms of fx(x) and fy(y). This process is well

established and has been used extensively in the algebra of

independent variables.

Now, suppose that X and Y are not independent. If the

bivariate probability density function fx,y(x,y) is known, an answer

still may be obtained by the use of double Mellin transform

techniques. To date, very little work has been done in this area due

to the difficulties of performing the double transform operations.

Suppose, however, that one has a general function of two

variables which has as special cases all of the bivariate probability

density functions in some group of interest. If a solution exists for

the general function of two variables by application of the double

transform techniques, then the resulting solution covers all those

problems involving the special cases. This is the motivation for

* . using a general function of two variables.

Suppose further, that the application of the double transform

% A; 1
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techniques to the general function of two variables has as its

solution a general function of one variable which has as special cases

all the univariate probability density functions of some interest

group; specifically, the H-function of one variable. If this

supposition is true, then one has a powerful technique for finding

exact distributions of products and quotients of dependent random

variables, and a means of combining these distributions with other

independent univariate distributions.

The primary purpose of this dissertation is to develop a

general technique, presented in Chapter 5, for determining the

probability density function and the cumulative density function of

the random variable

z - Xpyq

where X and Y are dependent random variables with joint probability

density function which may be expressed as a bivariate H-function and

p and q are rational constants. The general function of two variables

known as the bivariate H-function is chosen for several reasons.

First, the bivariate H-function is the most general of the special

functions of two variables and includes nearly every named function as

a special case. Second, much like the bivariate normal arises as a

natural extension to the univariate normal, it would seem that the

bivariate H-function distribution should be a natural extension to the

univariate H-function distribution. This is indeed the case. Chapter

4 shows that many of the properties that hold for univariate

o'°
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H-function distributions hold also for the bivariate H-function

distribution. The bivariate H-function distribution has the

additional feature that the products, quotients and rational powers of

dependent H-function variates are reduced to univariate H-function

variates.

~In developing the theory above, a second purpose evolved as a

natural extension to the primary purpose above. A technique is

presented in Chapter 5 for determining the bivariate probability

density function for the random variables

n Pi n qi
Z A X Xi , W 11 [ Yi

where each pair, (XiYi), are dependent variates with a given

bivariate density function which is expressible as a bivariate

H-function and Xi, Xj i Dj and Yi. Yj i ij are independent. Exponents

pi and qi are rational constants. It is shown in Chapter 5 that such

combinations of pairwise independent variates result in the dependent

variates Z and W which have a bivariate density function which is also

expressible as a bivariate H-function distribution.

In the course of developing the above general technique, some

secondary purposes became evident. One is the attempt, in Chapter 3,

to relate bivariate H-functions to known special functions and to

other simpler H-functions. The general form for the bivariate

H-function is a double contour integral containing products and
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quotients of gamma functions and is not readily identified by this

%. •

form. The properties and identities given in Chapter 3 prove useful

in evaluating H-functions in later Chapters.

In his dissertation, Cook (5) gives a convergence proof for

the univariate H-function distribution and a readily applied technique

for inverting the H-function using residue theory. Chapter 6

demonstrates the applicability of using residue theory in the

" bivariate case and several examples are given. While the techniques

given are generally applicable, a bivariate proof similar to that

given by Cook would still be required to develop practical guidelines

for when left half plane residues versus right half plane residues

should be summed in each contour integral to evaluate a given

'- bivariate H-function.

.. To study and develop the power of the bivariate H-function

distribution, three new bivariate exponential distributions are

developed in Appendix C. These distributions are shown to be special

cases of the bivariate H-function distribution in Chapter 4. These

distributions indicate the versatility of the bivariate H-function

distribution in the contours the bivariate H-function can undertake as

.% given in Appendix D.

Some important limitations to the scope of this dissertation

must be stated. For instance, techniques are presented for

determining products, quotients and rational powers of dependent

H-function variates. The study of sums and differences of independent

... * , * . .%** - . * % ~
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H-function variates has been established through the work of Carter

(3,4), Eldred (7), and Cook (5). The extension to dependent

H-function variates for sums and differences is not immediately

accomplished. To do so, one must first extend Prasad's theorems (57)

for obtaining the Mellin transform from its Laplace transform and

conversely to the bivariate case. Then, one must be able to obtain

the Laplace transform of the bivariate H-function. Some work in this

area has already been accomplished by Goyal (69). Finally, one must

determine if a general technique for using double Laplace transforms

exists for solving for the density function of a random variable which

is the sum of two dependent random variables. While it would seem

natural that such a theory similar to that developed for products and

quotients of dependent random variables using double Mellin transforms

exists, the development of such a theory would present a formidable

task.

The bivariate H-function is not defined for a zero or negative

real value of its arguments. Therefore, only probability density

functions that are defined to be zero for nonpositive arguments are

treated. Techniques for finding probability density functions defined

non-zero for both positive and negative arguments are handled by

dividing such functions into four components, one for each quadrant.

Such techniques are presented by Fox (10) and Subrahamian (19). These

techniques result as an extension to work done by Epstein (9) and

Springer and Thompson (18) for independent variables.

-p. ' .. " . ""''. - - - "% '"% " % ""'•" "-, -, "" . ' '% '"" . . % _
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The algebra of random variables is a vast field of study and

the study of the algebra of dependent random variables is still in a

relative state of infancy. Combining the advantages of a general

function and of certain properties of the bivariate H-function and its

subsequent reduction to a univariate H-function for products and

quotients of dependent H-function variates is, hopefully, a meaningful

contribution to this field of study.

-...
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1.2 Literature Survey

Since the 1920's, considerable attention has been given to the

derivation of probability distributions that are the result of some

algebraic combination of random variables with known probability

distributions. Early authors, including Aroian (24), Craig (26), and

Craig (27,28,29) have presented detailed discussions on sums,

products, and quotients of independent random variables. The use of

Fourier and Laplace transforms extended the earlier work dealing with

sums and differences of random variables. Springer provides an

excellent discussion and bibliography on this subject in his book

(17).

The problem of treating products and quotients of random

variables, however, was limited to a few special cases. The first

practical approach for dealing with products and quotients of

independent variables was presented by Epstein in 1948 (9). Epstein

used the Mellin integral transform to derive the probability density

functions of the Student t and Fisher F statistics and of the product

of two standardized normal variates. His work was limited to two

random variables. In 1966, Springer and Thompson (18) extended the

work of Epstein to n random variables.

The most significant advances in the algebra of random

variables came in 1972 when Carter (3,4) tied together the physical

science work on H-functions and the probability work on Mellin

integral transforms into a powerful general theory. He introduced a

Z-1
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new probability distribution, the H-function distribution, which

S- . includes as special cases, ten of the well known classical

distributions - gamma, exponential, chi-square, Weibull, Rayleigh,

Maxwell, half-normal, beta, half-Cauchy, and general hypergeometric.

Carter also proved that products, quotients, and rational powers of

independent H-function variates are also H-functions.

In 1979, Eldred (7) extended the work of Carter by developing

a computer program to calculate the probability density function of

combinations of products, quotients, and powers of H-function

- . variates. He also derived the H-functional form for the half-Student

and F distributions.

Cook (5,6) carried this work even further to provide a simpler

method for calculating the H-function resulting from some combination

of H-function variates. He also developed a new computer program

which could handle sums as well as products, quotients, and powers of

H-function variates.

.-.. Most of the current work on transform and H-function theory

for the algebra of independent random variables is given in books by

Springer (17), Mathai and Saxena (14), and Giffin (98) and in papers

by Eldred (7) and Cook (5,6).

Today, the H-function techniques are powerful enough to handle

most algebraic combinations of independent random variables. However,

the algebra of dependent random variables has received little

attention. Much of this has been due to the inability to separate

'" *
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random variables residing in a multivariate density function due to

the dependency structure of the density function. Indeed, simply

defining a bivariate density function for two dependent random

variables with known marginal density functions has been a major

obstacle. Except for the bivariate normal, no unique bivariate

density function can be derived for two random variables with a given

covariance matrix and marginal density functions.

In the 1920's, other bivariate distributions were constructed

which had as marginal distributions corresponding well known

univariate distributions which included - bivariate Students t,

bivariate beta, and Rhodes distributions. Little more was

accomplished until the development of a bivariate gamma distribution

in 1941.

In 1960, Gumbel (37) studied a bivariate distribution which

has exponential margins, but no meaningful derivation for the

distribution is known. Marshall and Olkin (48,49) introduced a

bivariate distribution with exponential marginals by studying a

two-component system which fails to function after a shock to one or

both components. Further, by making a simple variable transformation,

they were able to express a meaningful bivariate Weibull distribution.

In a recent book, Mardia (47) provides an excellent summary

and bibliography of most of the well known bivariate distributions

derived up through 1970. Ord (55) provides a similar summary on

families of frequency distributions which include certain classes of

4 4



... o . . ., . . - . -_ . .. . . ., . - . . -- - . . . " - . * D ° ..- o_

10

bivariate distributions. A summary of the more classical bivariate

distributions given by these two authors is given in Appendix A. More

recent contributions include a derivation of a compound gamma

bivariate by Hutchinson (42) in 1981 and a new class of bivariate

logistic distributions by Ali and Mikhail (21) in 1978. Also, current

interests have extended certain known bivariate distributions into the

complex space. Recent articles include those by Brock and Krutchoff

(25), Giri (36), and Saxena (58).

With the exception of the bivariate normal distribution, most

of the work in multivariate analysis has been in the area of

characterizing a given bivariate distribution either through a

thorough study of its marginal and conditional probability

distributions, or through a study of its characteristic function.

Such analysis is reproduced in books by Springer (17), Anderson (23),

Feller (34,35), Mood and Graybill (52), and Parzen (56). In addition,

recent articles on the subject include those of Lukacs and Beer (46)

and Abrahams and Thomas (20).

Work on the actual distribution of algebraic combinations of

dependent random variables has been mostly limited to the bivariate

normal distribution. In his book, Springer (17) defines the bivariate

normal distribution as well as an established methodology for deriving

the sums of bivariate normal variates using double Fourier integral

transform techniques. The distribution of the product of two

dependent normal variates was studied by Aroian (24) in 1947, and the
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distribution of the quotient of two dependent normal variates by Craig

(27) in 1942. Nicholson (54) used a geometrical approach to study the

ratio between two dependent variables, but was able to apply his

results only to the bivariate normal.

Along with new interests in studying and developing new and

meaningful bivariate distributions came revived interests in studying

products, quotients, and sums of the dependent variates of these

- distributions. Current research is very specific in nature in that

techniques used for one bivariate functional do not apply to another

bivariate functional. Indeed, the techniques for products or

C- .V quotients may not even be the same for a given bivariate density.

' Current research in this area include Abrahams and Thomas (20), Alsina

and Bonet (22), Gupta (38), Lee, Holland, and Flueck (45), Mathai

"U-. (50), Tan (60), and Wallgren (61). From these studies it becomes

clear that a more general theory that is applicable to a wide variety

-"a of cases is a much needed tool for the multivariate analyst.

In 1944, Reed (16) defined the double Mellin integral

transform and its inversion integral with associated theorems for

each. He also presented a theorem for deriving the double Mellin

transform of the product of two bivariate functionals. As an example

of his theorems, Reed derived the double Mellin transform identities

for Appell's hypergeometric functions of two variables.

Fox (10) provided the first practical method of handling

$ J. products of bivariate density variates by extending the results

44.'
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derived by Reed (16) to cases of statistical distributions. He also

included some work on quotients of bivariate density variates as well

as a detailed discussion on how to handle functionals that resided in

other than the first quadrant. Fox's work however, was limited to

finding a bivariate density function that resulted from products or

quotients of variates of two bivariate density functions.

Subrahamian (19) was the first to provide significant insight

as to deriving a univariate density function which resulted from a

product or quotient of two dependent variables which share a single

bivariate distribution. He used the results of Fox (10) and combined

them with earlier results on independent variates by Epstein (9) and

Springer and Thompson (18). Subrahamian applied his conclusions to

the bivariate normal distribution and derived by this alternative

method the same results previously presented by Aroian (24) and Craig

(27,28).

As a result of the labors of the authors listed above, today's

statisticians have a set of powerful tools in transform theory for

handling certain algebraic combinations of independent and dependent

variables. However, it would seem a natural and powerful extension to

this theory if one could apply certain results of Carter's H-function

analysis to bivariate distributions as well. A brief review of work

on H-functions of two variables follows.

In the early 1970's, Verma (86,87), Mittal and Gupta (75), and

Goyal (69) extended the H-function defined by Fox to a generalized

a'
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H-function of two variables. In their book, Mathai and Saxena (14)

reproduce a formal definition of the H-function of two variables as

* well as some important properties and identities for the H-function of

"- two variables. They point out the importance of this function arises

from the fact that it contains as special cases H-functions of one

Ovariable, G-function of two variables, Whittaker functions of two

variables, and Appell's functions of two variables.

The majority of H-function work has been highly theoretical

and generally restricted to a few special cases. Most of the articles

on the subject are by authors from India and are published in foreign

or little known journals, and are not easily accessible to the U.S.

researcher. Almost no applications are given in the literature and

the few given are for physics and engineering. Due to the notation

and the curse of dimensionality, this problem is particularly true for

"I. the H-function of two variables. Thus far, the limited work done on

bivariate H-functions has been in the area of extension of work from

G-functions to H-functions, Argarwal and Singhal (62), and on

identifying special cases of the bivariate H-function, Anandani (64).

Most of the significant work done on the bivariate H-function lies in

the area of solving differential or integral equations. Solutions of

dual integral equations by the use of H-functions can be seen in the

works of Pathak and Prasad (78) and Saxena (82,83). In 1972, Mittal

and Gupta (75) used a generalized function of two variables to solve

certain classes of integral equations.

.-I
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Along with a more general and subsequently more useful

definition of the bivariate H-function, Goyal (69) provides some

insights on the applicability of taking the Laplace transform of the

bivariate H-function. Other work in this area includes Prasad and

Maurya (79) and DeAnguio and Kalla (66).

.9
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1.3 Bivariate Probability Theory

1.3.1 Definitions:

(35:66-74;56:354-365;52:82-98,198-215;23:60-66;43:4-12)

Let X and Y be jointly distributed random variables having the

"" bivariate density function denoted by fx,y(x,y) and the bivariate

cumulative distribution function by FX,y(x,y). Then

F-(x,yy) - P(X < x , Y < y) (1.1)

'-9. If we are interested only in the cumulative distribution of X,

then it is apparent from (1.1) that

P(X < x) - FXY(X,-) (1.2)

Therefore, Fx(x) - FX,y(X,-) defines the cumulative

" ' distribution function for X and its associated density function is

given by

fX(x) - f fX,y(x,y)dy (1.3)

NSimilarly, the density function for y is given by

IF

fy(y) - " fX,y(xy)dx (1.4)

The density functions fX(x) and fy(y) are known as the marginal
O.
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density functions for the joint density function fxy(X,Y).

The expectation Pz and variance ax2 of x, if they exist, are

given by

Px = E(x) = f " Xfxy(x,y)dxdy (1.5)

and

x Var(x) = f f (X-ux) 2 fXy(x,y)dxdy (1.6)

Similar identities are given for the expectation Py and

variance a of Y.Y

The expectation Ijy or first product moment of X and Y, is

given by

Pxy - E(xy) = f f xyfX,y(x,y)dxdy (1.7)

Equations (1.5) and (1.6) can be written in a more general

form for higher ordered moments of fXy(xLy). Let 'nl,n2 be the nl,n2

ordered moment for fxy(xy), then anln2 is given by

ni n2
Cnl,n2 = E(x yn )

= $ $ xnlyn 2fxy(x,y)dxdy (1.8)

Then, el, 0 = t~x, "0,1 - Uy. and al, I vxy"

4...

4.
4o

,',... .-.-,.-,--. -,...-.-.-..-.-,;:.-.-.-. -. ..- -.-.-:- .w --"v " ,eM", " "),e" " " "" w'' ",'-¢"'," "¢ 'J "." 'I
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Similarly, the central moments, pnl,n2' for fXy(x,y) are

given by

nl,n2 Ex - E(x)nl[y - E(y)Jn 2} (1.9)

Then, p 2,0 a °x2, I0,2 = ix2, and P is referred to as the

covariance of X and Y.

Specifically rewritten, the covariance cov(x,y) for X and Y is

given by

cov(x,y) = f (X-U )(Y-1y)f X y(x,y)dxdy
x y

Sf $ xyfx,y(x,y)dxdy - y (1.10)

The covariance of X and Y is a measure of the dependency

between the two random variables X and Y. The dependency structure of
$5..

X and Y may also be characterized by the correlation coefficient,

p(x,y), and is given by

P(x,y) = cov(x,y)/0xo (a.11)

* If X and Y are independent, then p(x,y) 0 0. However, it is

not necessarily true that if p(x,y) = 0, then X and Y are independent.

O5.
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1.3.2 Properties of Moments: (56:354-365)

Let g(x,y) be a function of X and Y where X and Y are jointly

continuous with a joint density function fX,y(x,y). The expected

value of a function of two real variables, E[g(x,y)], is defined as

E[g(x,y)] - f f g(x,Y)fx,y(x,y)dxdy (1.12)

From this definition, the following linearity property for

expectations of jointly distributed random variables is derived.

r 1 Theorem 1.1: If X and Y are real random variables which are jointly

distributed by fX,y(x,y), and if X and Y have finite expectations E(x)

and E(y), then the sum X+Y has a finite expectation given as

E(x + y) - E(x) + E(y) (1.13)

A similar relation may be found for finding the variance of

two jointly distributed random variables.

Theorem 1.2: If X and Y are real random variables which are jointly

distributed by fx,y(x,y), and if X and Y have finite variances Var(x)

and Var(y) and a finite covariance Cov(x,y), then the sum X+Y has a

finite variance given as

Var(x+y) = Var(x) + Var(y) + 2Cov(x,y) (1.14)

1.3.3 Moment Generating Functions: (56:354-365;52:200-204)

The joint moment-generating function for a probability density

S function of two variables fX,y(x,y) is given by

% - .-
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Y-i 2  - f e tlX + t2Y

.Xy(tllt 2 )  $ $ e fX,y(x,y)dxdy (1.15)

,.* '... where t1 and t2 are two real numbers for which the double integral

exists.

If the integral exists, then the following moments may be

V found:

E(xn) = n F-y(0,O)
-.. ~t 1

E(yn) - p xy(OO)
at2

V.

,-,. 2
E(x,y) - -- FXy(OO)

atlat2

For central moments, replace x and y by x - E(x) and y - E(y)

respectively. Then the following central moments may be found:

Var(x) - F" ''Var~x = -2 FX-Elx),y-E(Y)(O'O)

2

Var(y) - F a00
.at 2 X-E(x),YE(y)
S22

!0,

.o %,
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Cov(x,y) 2 FXE(x)y.(y)(0 ,)

at 1 ,t2

Proceeding in a similar manner will yield any degree of
* '"

moments of higher order.

Properties: If Z X + Y, where X and Y are independent, Fx(t) is the

moment generating function of X, and Fy(t) is the moment generating

function of Y, then the moment generating function of Fz(t) is given

as

€,". Fz(t) - Fx(t)Fy(t).

Characteristic Function: In cases where the integral in (1.15) does

not exist, moments may still be found in an identical fashion by use

of the characteristic function. The characteristic function is

identical to equation (1.15) with tI and t2 replaced by it1 and it2

respectively.

....

O.

0.O

4:'.
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1.4 Transformations of Random Variables

Emphasis in this area is on the use of integral transforms to

obtain probability density functions for certain transformations of

random variables. First, a review of some related probability

concepts should be made.

- S :A one-to-one transformation h(x) from a set S into a set T

means that for each y, an element of T, there exists one and only one

x, an element of S, such that h(x) - y. When a function h(x) is a

one-to-one transformation from a set S to a set T, then the inverse

transformation h-1(y), from T onto S, exists and h-l[h(x)] - x.

Stating that a set S in the set of positivity for a transformation

h(x) means that S is the set of values, x, for which h(x) is positive.

Two random variables X and Y are independent if their joint

probability density function fX,y(x,y) equals the product of their

marginal density functions fx(x) and fy(y). This means that any

variation in X will in no way affect the outcome of Y, or vice versa.
4.ay

Theorem 1.3: Let X be a random variable with continuous probability

,., function fX(x) and suppose that y - h(x) is a one-to-one

/ transformation from S, the set of positivity of fX(x), onto T, the

image of S under h(x). If h-(y) is differentiable and its derivative

is continuous on T, then the probability density function of Y may be

given as

.J.

'e-%

$0.'

ci. A ..!... - . . *S*
° °
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f(h1l(y)] h_1(y) ,y rT

dy

fy(y)

0. ,else

Theorem 1.4: Let X (Xl, X2, .. Xk) be a set of k rando2 variables

having the joint continuous probability density function fX(x). Let

Y - h(x) {Jhl(x), h2(x), -.. h,,(x)) be a set of relations forming a

one-to-one transformation from S, the k-dimensional set of positivity

of f X onto T, the k-dimensional image of S under h(x). The inverse

transformation exists, _- . h-1 (y) - {glQ, y(), ... gk(l)]. If

the partial derivatives of h (y) exist and are continuous,

9ij ( gi(yl, Y2- ' Yk)) i,j - 12..

aYj

then the joint probability density function of Y is given by

Xf(g1 (Y-), 9 2 (), ... gkQ?}-Jt ,iy c T

10,else

where J is the Jacobian, the determinant of first partial derivatives,
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gll g1 2 
• ' • glk

. g2 1 g2 2  g2k

gkl gk gkk

Using Theorem 1.4, one can find the distributions for the sum,

product, difference, and quotient of two jointly distributed random

variables.

Example 1.1: Suppose the probability density function of Z -X/Y is

*desired. Let W -Y so that XiZW and YnW and

ax/az axc/av w z

.* . I

-y/az ayia 0 1

By Theorem 1.4, for the approprate ranges of z and w,

.' *

p t fzw a fqu n o wo,) Jn I

The marginal distribution of Z a X/Y is found by integrating the above

joint distribution fZW(z ) over the proper range of w:

fz(z) - f fx,y(zy,y)ydy

Notice that if W X l so that Y - W/Z then the determinant of the

9O.

o ,.
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m2
Jacobian equals -w/z2  Then

fz(z) f (x/z2)fx,y(x,x/z)dx

4 .,

The point here is that the two forms for calculating fz(z) are

not identical by a simple interchange of the x and y variables. This

is the only case where the symmetry does not hold. While both forms

are certainly valid, the first form is the one most commonly seen in

the literature and is usually the most easily applied.

Using Theorem 1.4 similarly to find the distributions for the

..7- difference, product, and sums of two random variables gives the

P following theorem (41).

Theorem 1.5: If X and Y are jointly continuous random variables with

- probability density function fX,y(x,y), then

(I) the probability density function of the random variable

Z -X + Y is given by

fz(z) - fX,y(z-y,y)dy f fX,y(x,Z-x)dx

If X and Y are independent, then

* fz(z) - f fX(z-y)fy(y)dy f fX(x)fy(z-x)dx

(2) the probability density function of the random variable

Z X- Y is given by

@..

a,,
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fz(Z) f y(z+y~y)dy a f ~(x,z~~x)dx
z - Ya'

If X and Y are independent, then

z) f fX(z+y)fy(y)dy fXx)fy(z~x)dx

(3) the probability density function of the random variable

Z -XY is given by

fz(z) f -y'tfX,y(z/y~y)dy f ix-'IfX,y(x,zfx)dx

If X and Y are independent, then

fz(z) - f ylIfX(z/y)fy(y)dy - x11lfX(x)fy(zfx)dx

(4) the probability density function of the random variable

Z -X/Y is given by

Ez(z) I ylfX,y(zy,y)dy - E fXyxEd
-a 2a z

If X and Y are independent, then

fZ~) -I ylfX(zy)fy(y)dy -IJ 2 fX(X)fy(E.)dX.fzaz Ia XI

Z2

S.%
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Theorems 1.4 and 1.5 have been applied to many distribution

problems. However, each case must be treated separately and special

care must be taken to determine the proper integration limits and

ranges for the variables. A look at some simple examples can help to

clarify this point.

Example 1.2: Consider the bivariate standard normal given by

f=,Y(x) 1 exp -1(x 2 _ 2pxy + y2)

-< x'y < -, P *1-

Suppose we wish to find fz(z) where Z - X/Y. Then

fz(z) - xlfXy(x,zx)dx

a 1~-- exp -1 (x 2 -Pzx 
2 + Z x 2)lxtdx

2 1 /i-p - 12( _P2)

Let a - (1 - 2Pz + z2 )/2(1-p 2 ). Then

fz(z) 1 e x e-aXdx

2 w/-" -a

- 1 1

a

I-

(- 2pz + z2)

I %4

,

N ,' ,- , . . N -. - ...% ,* .,'. ';,. ; ; .S . r ...: : . .,, o -.r ,..... . .... .... ,. ....% ., * *. " . -.. .
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This is equivalent to Craig's (28) derivation if a = a, 1 and
xy

Example 1.3: Now consider Morgensterm's bivariate uniform density

given by

fxy(x,y) I + p(2x - 1)(2y - 1) 0 < x,y ( I

Let Z = XY. Then

fz(z) f ly- fX,y(Z/yy)dy

The lower limit of integration of y is determined from the relation

x -z/y, 0 < x < 1, 0 < y <

Since x < 1, the lower limit on y is z. Furthermore, since x < I and

y < 1, the maximum value of z - xy is I. Then

1

fz(z) - f (l/y)[1 + p(2z/y - 1)(2y - 1)dy
z

- [p(4z + I) + llin(l/z) + 4p(z - I) , 0 < z < I

If p = 0, then X and Y are independent and fz(z) reduces to

fz(z) - -ln(z) , 0 < z < 1

This is the same form as that derived by Springer (17:91-94) for the

case of the product of two independent identically distributed uniform

variates.

I . ,- . . -,- - . -. - . - . - -. .- ., .. , " " "". , ' - . - " . " -" _. "- .._ ."2 <...- _' ' = 2".. '
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Example 1.4: Suppose the probability density function of Z XY is

desired where X and Y are jointly distributed by Kellogg-Barnes III

distribution given as

$a c -(Oix + Bxy) x,y>0
r~c) a,0>o , c>2

from Theorem 1.5, case (3), the distribution for Z is given by

fz(z) i _ fX y(x,z/x)dx

= $dce - z 0 xc-l e - a x dx
F(c) 0

- Be -B z  z>O

which is the univariate exponential distribution with parameter 1/0.

Example 1.5: Consider the Kellogg-Barnes II distribution given by

fx ,y(x,Y) - a2 e-(ax + Oy/x) xy>O

From Theorem 1.5, case (4), the distribution of the random variable

Z = X/Y may be found by

l.
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fz(Z) I $ yfx,y(zy,y)dy
0

- Ba2 e- O/z f- ye-az y dy::i0
- (fO/z )e-B3/z

Now suppose the reverse is desired, that is, the distribution
6:

of Z Y/X. Theorem 1.5, case (4), still applies by using a simple

'9 change of variables and fz(z) is given by

fz(z) - Xfx,y(x,zx)dx

0

$a e - z  xe-*x dx
0

. e-OZ

While Examples 1.4 and 1.5 are relatively straight forward,

Examples 1.2 and 1.3 show that the use of Theorem 1.5 for products and

quotients of dependent variables can be an arduous task. For products

and quotients of dependent variables the task can be simplified

through the use of Mellin transform techniques as will be shown in the

next chapter.

'9e
'9 r
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CHAPTER 2

Application of Integral Transforms to Statistical Analysis

2.1 General Remarks

Section 1.4 of Chapter 1 shows that using convolution

integrals for the transformation of variables to find the distribution

for the sum, difference, product, or quotient of two random variates

can be a difficult task. This chapter outlines techniques to simplify

the problem by utilizing integral transform techniques. A review of

integral transforms and the associated techniques for finding

distributions of algebraic combinations of independent variates is

presented followed by a discussion of the extension to products and

quotients of dependent variates using double Mellin transform

techniques.

Since this dissertation is devoted to products and quotients

of dependent variates using double Mellin transform techniques, the

double Mellin transform is developed more completely. Theorems

governing its use as given by Fox (10) and Reed (16) are presented.

Extensions to univariate Mellin transform properties are presented for

the double Mellin transform. These properties prove useful to Mellin

transform manipulations in later chapters.

Finally, theorems are given for the distribution of products,

quotients, and rational powers of two dependent variates. Theorems

are also presented for products, quotients, and powers of variates

from two bivariate distributions which are pairwise independent.

30

-. 1.
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2.2 Integral Transforms

2.2.1 Double Fourier Transform: (17:67-75;106:76-79)

A real function of two variables fxy(xy), where each

variable is defined over the whole real line, is doubly Fourier

transformable if the integral

I . ik
lkx + ik2y

f e dxdy

converges for some real value for k1 and k2. Then,

itlx + it2y
F tt,t (fX,y(x,y)) f- f e fxy(x,y) dxdy (2.1)

is the double Fourier transform of fxy(x,y). Ft (fx y(x'y)) is

t, 2

called the bivariate characteristic function of fx,y(x,y), and

eitlX + it2Y is called the kernel. The inversion integral is given by

i h+iin k+ia -itlx - it2Y

fx,y(Xy) = e -h-i-xk-- e F(t1,t2 )dtldt2  (2.2)2-fh-i- k-i-

2.2.2 Double Laplace Transform: (106:221-228;34:452-458)

A real function of two variables fxy(xy), defined everywhere

for x > 0 and y > 0, with x and y real, is doubly Laplace

transformable if the integral

. . .... * - ,,- ,.-, . , ., -, * .',-.~ . ( .,C ,... .
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CO CO." .a -kl x  k

0fe 1  
-e k fx,y(xy)tdxdy

.'....0 0

converges for some real values of k, and k2. Then

- - . 0.-rlx - r2 Y

Lrr{fX 'y(xy)} e $0 i x e fxy(x,y)dxdy (2.3)

is the double Laplace transform of fx,y(X are.-.. y~,y), where r1 and r2 ae

* complex variables.

From this definition it can be shown that

Lrl,r 2(fX,y(ax,by)} - (ab) L(r1/a,r2/b) (2.4)

The double Laplace transform has been used in the past for

functions of x and y where x and y are independent. Only limited

consideration has been given to dependent functions of x and y.

2.2.3 Double Mellin Transform: (17:151-156;10;16;19)

A real function of two variables fx y(x,y), defined everywhere

for x > 0 and y > 0, with x and y real, has been defined by Reed (13)

to have the double Mellin integral transform given as

. ' 1  
521

M(s1,s2 ) 0 0 $ x y fxy(xy)dxdy (2.5)

.:. and its inverse as

....---.

V% * .",* '* f
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D" 1 h+i4O k+i-' -sI -s(xy) -1 x ysM(sls 2 )dsldS2  (2.6)

XY) (21i)2  h-i- k-i.

The conditions for which (2.5) and (2.6) are valid are stated

by the following theorems. The proofs are given by Reed (16) and Fox

(10).

Theorem 2.1: If

(M) M(s Is2 ) is a regular function of both variables sl,s 2 in

the strips a < sI < b, c < s2 < d

(ii) in these strips M(s1 ,s2 ) = 0( Is m)O( Is2 1-n) for some

a > 0, n > 0, as Isli and Is21 tend to infinity independently of each

S'. other;

(iii) a < h < b and c < k < d

*M W

(iv) fI I M(siS2)1 dsI jds2 j exists when taken along
-- -a

any lines parallel to the imaginary axis in the strips defined in (i)

(v) fy,y(xy) is defined by equation (2.6)

then

" 7 Sl_ s2-1
- M(S(1,52) 0 0 x y fx,y(x,y)dxdy•0 0

is true.

hi%
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Theorem 2.2: Let X denote a part of the complex x plane which is

bounded by two lines through the origin and which includes the whole

of the positive real axis from 0 to +-. Let Y denote a similar region

in the complex y plane. If with x in X and y in Y the following

conditions are satisfied:

(i) there exists two real numbers h and k such that

Sxhykfx,y(x,y) is a regular function of both x and y;

(iL) xhy-fr(xy) - O(jlogxj-m)O(jlogyj-n), m > 0, n > 0, as x

and y tend to infinity independently

(i) fflhx yh y fx,Y(-,Y)lldlldy exists, when taken along any

lines in the X and Y regions

(iv) H(s1 ,82 ) is defined by equation (2.5)

then equation (2.6) is true

These two theorems give an exact analogue to the single lellin

integral transform theorems.

2.2.4 Mellin Transform Properties

By making the change of variables x-u/a and y-v/b in the

defining integral (2.5),

M 8 f(ax,by) ) f I I f(u,v)u v dSlds2elS2 0 0

-a -2-1  2
= a b M (f(uv) } (2.7)ls 2

Since multiplying f(x,y) by xayb merely results in changing s1

'5-" " . .' .' '- .' ' '. . ." " ' ' . '. . ' ,' ', ' \ " , . ', " " ,, " " , " . , , ' ' ". " ", . , ,
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to s1+a and s2 to s2+b, we also have the following relation:

I xayb f(x,y) M X M+a,s2+b f(x,y) 1 (2.8)

S~/ and y- 1/bs2+

For a,b > 0, making the change of variables xWu and y-v yields

- sl/a-l/a s2/b-1/b
MSl,s2{f(xa,yb)} = 0 f f(u,v)u v ((ab)- ul/a-lvl/b-ldudv)~ l'~200

W O sl/a-1 s2/b-l

- (ab)- I  f(u,v)u v dudv
0 00O

- (ab)- M (f(u,v) 1 (2.9)

The Mellin transform also has certain unique properties for

derivatives and integrals of functions. By definition

OD '0 Sl- s2-1 f(x,y) I dxdyMS1,s2 ( gx f(x,y) 0 f 0 y [ X
O0a

If [(a/ax)f(x,y)] is continuous for y constant and 0 < y < then the

equation above can be written (89;92:179-180)

82-1 /xSl - I a

s X f(x,y) y 0 ax f(x,y) dxdy

integrating the inner integrand by parts yields

"~~O - s2-1[fx all(l i x81-2 ]

Sss( [(x,y)) = f - - )-2f(xy)dx dy
016a 0 0

a
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If there exist Ol, 02 such that

sI-i S1-1

lim x f(x,y) - 0 ; lim x f(x,y) - 0

{when a1< Re a, <02 and if Ms 1 1 ,87 f(x,y) } exists in that band,

then

Ma f(xy) -(s 1-)M 1 f(x,y) } (2.10)

Equation (2.10) can be written conveniently in terms of

integrals rather than derivatives. Equation (2.10) can be written in

the form

M ( f(x,y) I-(s 1-I)M ( f(u,y)duISlS2 1-12 x

.  Replacing a1 by s+l yields

H sls{ f f(u,y)du l M s f(xy) (2.11)
1,S2 x 51+1,s2

Similarly, if [(a/ay)f(x,y)j is continuous for x constant,

0 < x < and if there exist a3, 04 such that

.. - s2-1 a 2- 1

.- lrm y f(xy) -0 ; 'in y f(x,y) -0
y-,O y-j-

when 03 < Re s2 < o4 and if Ms, 1S2_{ f(x,y) } exists in that band,

N4.
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then the following hold.

M X f(x,y) } -(s2-l)MsS { f(x,y) 1 (2.12)

H 1 (213

" { f f(x,v)dv } -s2- I  +1( f(x,y) 1 (2.13)".°', lS 2  S,2+

Higher derivatives can be dealt with in a similar fashion.

Applying (2.11) and (2.13) iteratively, the following property for a

double integral can be written.

H r f(u,v)dudv a ,l M f(x,y) (2.14)
"S2 x y 112(.

Equation (2.14) above is a useful property in that it may now

- be used in developing the cumulative of the H-function distribution.

The properties developed above are summarized below.

"" -Sl b- 82

f(ax,by) = a S f(x,y)
-Pr. 1,82 K 1  (fS2~ )

H S xHa y1
b f(x,y) Ms +b{ f(xy) }

M { f(xa,yb) } (ab)- I H f(x,y) I a,b > 0
.- 1,S2  s1/a,s2/b

0 s { / f(u,v)dudv } - (sls2)- H, { f(xy) }
1182 x y 1+1182+1

..
2.2.5 Mellin Transform of Appell's Functions: (16;8:232)

Reed (16) used the double Mellin integral transform to obtain

!%.

* ¢. .' v ' .?- ~ ' .
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the following transforms for Appells hypergeometric functions of two

-* variables:

x y Fl(a,b,b';c;-x.-y)dxdy
0 0

r(c)r(sl)r(s2)r(a-sl-s 2)r(b-sl)r(b'-s 2)

r-~ ~ ~~b~~- (2.15)
r~ar~br~b )rc-1-s2)

when 0 < Re(s 1+ 2) < Re(a), 0 < Re(s1 ) < Re(b), 0 < Re(s2) < Re(b')I

I I x y F 2(a,b~b';c,c';-x,-y)dxdy
5.'.5.'.~ ~ 0 _____________________

r(sl)r(s2)r(c)r(c' )r(a-sl-s2)r(b-s)r(b'-s2) (.6

r(a)r(b)r(b' )r(c-sl)r(c'- 2

when 0 < Re(s 1+s2) < Re(a), 0 < Re(s1 ) < Re(b), 0 < Re(s2) < Re(b')

*q- y 82- F 3(a~al'hh';-.-w-'~A idv

-'0 0

* ~r(sl)r(s 2)r(c)r(a-sl)r(a'-s2)r(b-sl)r(b'-s 2) (.7

* - ~r(a)r(a' )r(b)r(b' )r(c-s1- 2

5-.S2

45 when 0 < Re(s1 ) < min(Re(a), Re(b)), 0 < Re(82) < min(Re(a'),Re(b'))

0*
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a Sl I s 2 _1

$I x y F4(ab;c,c';-x,-y)dxdy
00

• -r(sl)r(s 2 )r(c)r(c, )r(a-sl-s2)r(b-s1-s2)

r(a)r(b)r(c-sl)r(c'-s2)

when 0 < Re(S1 +S2) < Re(a), 0 < Re(sl+s2 ) < Re(b).

Equations (2.15) - (2.18) above may also be derived by making

appropriate sign changes in the formulas given by Erdelyi (8:232).

The importance of these transform identities will be shown later in

Chapter 3 when special cases of the bivariate H-function are

identified.

2.3 Integral Transforms for Independent Variates

From the examples it can be seen that using Theorem 1.5 can be

1% a difficult process. Integral transforms can help simplify the

process. For the case of X and Y independent, the following formulas

have been most helpful in solving algebraic combinations of random

variables.

Let Ft, Lr, and Ms represent the Fourier, Laplace, and Mellin

integral transforms of one variable respectively. Then special

properties of these transforms are

Ft(fx(x)} Ft{gy(y)} - Ft( $ fx(x)gy(y-x)dx }
-WO

*4op*
, .

t !Fz
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Combining these formulas with Theorem 1.5, the following results can

be derived:

(1) the probability density function of the random variable

Z -X+Y is given by

orfZ(z) -Fl-'{ FtI! (x)1 Ft[fy(y)I

Ye z) - L, 1 
1 L r~fX(X)1 LrlfYy)] x,y~z 1 0

where F 11  and L1 -l are the inverse Fourier and Laplace transforms of

one variable respectively.

(2) the probability density function of the random variable

Z -X-Y is given by

fz(z) a F1
1(f Ft~fX(x)J Ft[fy(-y)]Iwhere F 11 is the inverse Fourier transform of one variable.

(3) the probability density function of the random variable

Z-XY is given by

fz - 1 { MSfx(x)] M5[fY(y)J I X,y,z ft

LitS
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where M1  is the inverse Mellin transform of one variable.

(4) the probability density function of the random variable

Z = X/Y is given by

fz(z) "41-1{ Ms[fx(x)J M2_s[fy(y)J x,yz > 0

where MI-1 is the inverse Mellin transform of one variable.

A distinct advantage to transform techniques is that these

above formulas can be easily extended to more than two variables.

- However, these formulas are restricted to cases where X and Y are

independent.

2.4 Mellin Transforms for Dependent Variates

In 1957, Fox (10) applied the double Mellin integral transform

to the theory of bivariate statistics and derived the following

conclusions for relations of two bivariate distributions.

The expectation of *(xy), E($(x,y)], is defined by

(31:260-265)
..

o;_ E[O(x,y)] , " f *(x,y)f(x,y) dxdy
0 0

-.. s l-1 s -1

If O(x,y) - x y , then E[(x,y)J is the double Mellin transform

definition given by (2.5). Let f~1 ,(xl,yl) and f. (x2,y2) be two

bivariate density functions having the double Mellin transforms

M I(S1, 2) and H2(sl,s 2) respectively, and where x 1 , X 2 1 yl, y2 > 0.

Further, assume X1 ,Y1 are independent of X2,Y2. Then

.



42

E[O (xlY2)02(x2,Y2) ] = E[. 1 (x1 ,yl)J E[0 2 (x2,y2 )]

since Xl,Yl is pairwise independent of X2,Y2. If 1 (xlyl) =

SI-i s2-1 sl-1 s2-1
x1  Yl and O(x2,Y2) ' x2  Y2 , then

! E[ (x lx2) Sii(ylY2)s 2 ] H l(sl,S2) M2(SlS2)

V4%

The joint probability density function of (xlx 2 ,yly2) can now be

S- 1  s2-1
solved by substituting E[(xl, 2) (yly 2) 1 into the right hand

double integral of (2.6):

fz,w(z,w) - M2-1 [ M,(sl,s2)M2(sl,s2 ) 1 (2.19)

where Z - X1X2 , -1 and is the double Mellin inversion

transform as defined by (2.6). Continuing in this fashion, Fox showed

the following to be true.

-.

* -p fz,w(zw) = M2 [ Ml(2-sls 2) ] (2.20)
0

for Z = 1/Xi and W Y,

fz,w(zW) = M2 - ( [ 1(2-sl,2-s 2) ] (2.21)

for Z - l/X1 and W 1 1/Y1

f-i% .. , .'.. . . , .. . . b .,,,,O . £ % s . . ' .



143 X
fZ w(z'w) M t 1 s, 2 M(-sl,2-) (2.22)

for Z X X1/X2 and W Yl-

Subrahamian (19) combined the work of Fox (10) to deriveI

results for cases of products and quotients of two dependent

variables. Let X and Y be dependent random variables with probability

density function fX (x,y) which is positive in the first quadrant and

zero elsewhere. Further, suppose that the double Mellin transform of

IfX,y(x,y) exists and is given by M(s1,s2). If *(x,y) - x -LyS-1 then

E[ xs ys 1-ff ys fX,y(x,y) dxdy
0 0

-M5,5  fx,Y(x,Y) I 1

Let Z -XY, then

*E[ x y JE[ zs

Substituting E[ I~ into the inversion integral for the univariate

5% Mellin transform, the density function for Z can be found.

Specifically,

1p
fz(z) - 1  M(s's) (223

where Z - XY and M1  is the univariate Mellin transform inversion

* operator.
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Similarly, the probability density function of the random

variable Z - X/Y is given by

fz(Z) - M-l[ M(s,2-s) ] (2.24)

The work accomplished by Fox and Subrahamian can be extended

to n pairs of dependent variables which are pairwise independent.

This work, shown in the following theorems, is similar to that done by

Carter (3) for independent variables. Theorems extending

Subrahamian's work to raise dependent variates to rational powers are

also given.

Theorem 2.3: If X and Y are dependent continuous random variables

with a bivariate probability density function fxy(x,y), x,y > 0, then

the bivariate probability density function of Z = Xa and W - Yb, a,b

rational, is given by

M 2-1 Hasl-a+l,bs 2 _b+l fx,y(X,y) } Zw > 0

fz,w(Z,W) 0 (2.25)

0 otherwise

Proof of Theorem 2.3

The Mellin transform of the probability density function

fZ,W(z,w) is given by

'R
.pJ
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.- 5.{ fz,W(Z,W) } f fZW(Z,W)z w92 dzdw

%s

s -1 S -i
-E[z w

where E is the expected value operator. From the definition of Z and

W, this becomes

H fz,W(Z,W) } E [ (x 
a) (yb) s2-

s Sl,s2

, ..- as 1 -a bs2-bSI I fx,y(x,Y)x Y dSldS20 0

- f y(X)x (asl-a+l)-1 y (bs 2 -b+l)- ds1 ds20 0
" -=... -H fx,y(x,y ) }

as -a+l,bs 2 -b+l

From the inverse Mellin transform, (2.25) follows.

Theorem 2.4: If X and Y are dependent continuous random variables

with a bivariate probability density function fxy(xy), xy > 0, then

*the probability density function of the random variable Z - xayb, a,b

rational, is given by

- 1l-1 Mas-a+lbs-b+l{ fx,y(xty) z > 0

fz(z) (2.26)

0 otherwise

S,.

5,.-'~
-,_%.*;- ~ ~ *~-~..'.-.~.*
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Proof of Theorem 2.4

.". a  yb
Let U - and V - Y From Theorem 2.3

fU,V(U v )  -1 [ l,bs 2 b+lt fx,y (x y) }
2 ss2 2u  },-a

from which it follows that

M 5 5 { fUV(-) I Mas,-a+lbs2-b+l{ fY(X.Y)

Since Z -UV, applying Equation (2.24) yields

Vo; fz(z) - M- 1 [ Ms5 { fu,v(u
'v) I

SM 1-
1[ M asa+l,bs-b+l{ fx,y(x,Y) } ]

Example 2.1: (19;17:15--156)

Consider the bivariate standard normal distribution. For

x,y > 0, the double Mellin transform is

- 1 :: s,8 -1 s2- 1  1 -ff (x2-xy2)_dXdy'X,Y(SlS2) =2,_. x y exp 2(_2) xPy dy

-rs)r(s2) (1-0
2) [(S1+s2+1)/2-1J ] 5+5+1]

"'"" 2F1 -; -2 2 ; - 2]

(.+2+1)/2 2  2 2
2 r(1/2)r[(s 1+S2+1)/21

* From Theorem 2.4, for Z - X/Y, a - 1 and b - -1. The Mellin transform
of fz(Z) is then given by

.. a

"z(s) M Ms, 2 _s( fX,y(x,y) }
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r 1

r(s)r(2-s) _(Pi2) 2- _ ;I22r(l/2)r(3/2) 2 2 -2

The transform above is valid for z > 0 only, but by symmetry,

the inverse for z < 0 may be derived also. Subrahamian completed the

inversion to give

.5. fz(z) 2
. ir(1 - 2pz + z2)

This is exactly the form derived in Example 1.2 for ax  a 1, and

* x y"" PX = Iy M 0.

Example 2.2: Consider again, Morgensterm's bivariate uniform density.

fX,y(xy) - 1 + P(2x - 1)(2y - 1) 0 < x,y < 1

The double Mellin transform of this density is given by

= 0ss X f y y [1 + p(2x - 1)(2y - 1)ldxdy
00

+ P(s1 - 1)(s2 - 1)

SlS2 Sls2(sl + l)(s2 + 1)

If one is interested in the density function fz(z), where Z X KY, then

from Theorem 2.4 a = b = 1. The ellin transform of fz(z) is then

",""I,"L'''-". . .","/.( "?.- " , " ,". .;". .' ' ' . .'" /:.'.."
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Hz(s) -Mss{ fx,y(X,Y)

. 1 + P(s - 1)2

s2 s2(s + 1)2

The density function of fz(z) is found by performing the inverse

operation of Hz(s).

h+i- - oz-S (s.- 1)2

2 h-iI s s2( s + 1)2 d

The density of fz(z) may be found by performing the inversion integral

directly, or by summing the residues of two terms at s = 0 for term

one and s -0, s - -I for term two.

For term one, R, - residue at s - 0.

R - Z-8 ln(l/z) 0 < z < 11 ds s .0

For term two, R2 - residue at s - 0.

. R2  Pz8 ( - 1)2 40 + pln(1/z) 0 < z < 1
2 ds (S+1)2 s- 0

S

For term two, R3 - residue at s - -1.

R3  d 0z-(s- 1)2 4pz + 4Pzln(l/z) 0 < z <13 ds 2 s

Since all residues are valid for 0 < z < 1, fz(z) is equal to

the sum of R1 , R2, and R3. Summing these terms and rearranging, fz(z)

is then given by

on.
-.. . ..iv
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fz(z) P (4z + 1) + 1 ln(l/z) + 4P(z -1) 0 < z < 1
I

which is the same density function for Z which was derived in Example

1.3.

Theorem 2.5: If X1,Yl; X2,Y2 ; ...; Xn,Yn are n pairwise independent

continuous random variables, Xi,Yi dependent for all i, with bivariate

probability density functions f1(xl,yl), f2(x2,y2 ). --I fn(Xn'Yn )

xi'y i > 0 for I - 1,2,...,n , then the probability density function of

the dependent random variables

n a t  n biZ - ff Xi  ; W - a Y I
i-I i-I

for ai,bi rational, i-l,2,...n, is given by

,' z,wH) a:2[ Mi sa bi - fi(xityi) } Zw > 0

fwzw)- (2.27)

1 0 otherwise

The double Mellin transform of the probability density

function fz,w(z,w) is by definition

m m S~l s2_1

H s2 fzw(z,w) } - f0 Of fz1,w(ZW)z w dzdw

sl'-l 82-1
-E[ z w ]

where E is the expected value operator. From the definition of Z and

4,
4..
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a

W, this becomes

-n a S - a s2 1

s.,.. fz,w(Z,W) a E ii (xi  ) (Yi )
2s i-l

and, since Xi,Xj and Yi,Yj independent for all i J ,

n alsl-a i bis 2-bi
Ms { fz,(z,w) i E[ xi  Yi

i n aisl-al bs2-bi
a f f fi(xiyi)xi
il 0 0 bls d-b y

:: n

" . M (
-,I aisl-ai+lbsb+1 f(xiY) }

Applying the inverse Mellin transform, (2.27) follows.

Example 2.3: Consider the Kellogg-Barnes I distribution given by

fX,Y(x.y) - ar(+1) (x2 + y2)a e-a(X + x,y > 0

Letting r = x2+Y2 , the Mellin transform is given by

-,+1 W r/2 ar2 +S1 2 2-1 S-1 s

M(s1,S2 ) = W+ j-) 0 0 e- r cose sine d(dr

lOa+r(sl2)r(s2/2) s 1+82+20-2

a..i = wr(o+I)r(sl/2+s2/2) 0 r -e 2rdr

Letting u - r2 and du - 2rdr, then

k
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as r(s /2)r(s 2/2) -sl/2+s2/2+B-
M(s wr(+l)r(s/2+s2 /2) U e - Ou du

ar(sf/2)"(s 2/2)"(B+Sl/2+s2/2)

s /2+s2/2

Now suppose the bivariate probability density function of

Z X1/X2, W = Yl/Y2 is desired where X1,Y1 and X2 ,Y2 are distributed

according to the Kellogg-Barnes I distribution given above. Suppose

further that fl(xl,yl) has parameters al 1, 1 = 0, and f2(x2 ,y2 )

has parameters = 1, 82 = 8. Substituting the respective parameter

values into the Mellin transform for the Kellogg-Barnes I distribution

and from Theorem 2.5, aI = bI - 1, a2 = b2 = -l, the probability

density function of Z, W is given by

fz~w(z~) - M2
1 [Msls 2{ fl(xlyl) I M2-sl,2_s2 { f2(x2,y2 ) }

-1 [r(s,1 2)r(s 2/2)r(l-s1/2)r(l-s 2/2)r(8+2-s1/2-s2/2)
-~ 2 L 2 Ir(o+l)r(2-sl/2-s2 /2)

r (B+2) M [ r(2)r(sa/2)/2) r2)r(1-s1/2)r(1)r( /2)r(+2-s /2-s2/2)1
2 2 r(B+2)r(lr(l)r(2-sj/2s 2/2) J

Using property (2.9) for a - b - 2, then the density function for Z,W

above can be rewritten as

, S.,," " ' , " : .,+ ." " . ."" " " " , . - , ++ ; ''s '," + +" " """, 
'

" P; r / " " + ,,, + t., -. ", .. " % e.f. ' ° ' ';+, " ' '- - ," "J', " """ "
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fz,22) 4(0+1) 1 r2)r(i-st)r(1-S2)r(0+2-sl-s2
f. Z'Wz L2 Lr22r(l2)r(t)r(l)r(2-s-SJ

Using Equation (2.15) for b - b' - 1, a 0 8+2, and c - 2, the inverse

may be found directly and is given as

fz,w(Z,W) - 4(0+1) Fl(8+2;1,l;2;- 2 ,-w2

where F1 is Appell's hypergeometric function of two variables as

defined in Appendix B. The series converges when jxl < 1 and 'yj I.

For other values of x and y, the function can be evaluated by the

usual methods of analytic continuation.

Except for the normalization constant, the results given above

are identical to the results derived by Fox (10). The distributions

used by Fox were defined over the range - < x,y < a.

By applying Theorem 2.5 followed by Theorem 2.4 or Equation

(2.23), a general theorem for finding the distribution of a random

variable which is the product, ratio, or power of an arbitrary number

of bivariate random variables can be proved.

Theorem 2.6: If X1,Y1 ; X2 ,Y2; ...; XnY n are n pairwise independent

continuous random variables, Xi,Yi dependent for all i, with

probability density functions fl(x 1 ,Y2),f2(x2,y2), ... ,

xiy i > 0 il,2,...,n , then the probability density function of the

random variable

0

,-,a-.

' - . . . . , .. . . . . .
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n ai bi
Z ai xi  Yi~i-i

for ai,bi rational, i-l,2,...,n, is given by

. M 1 IEII Mas ai+lbs-bi+I fi (x i,y) ) z > 0

fz(z) (2.28)

L0 otherwise

The proof of Theorem 2.6 follows directly from application of

* (2.23) to Theorem 2.5.

The advantage of these theorems is that all the theorems

developed by Carter (3) are special cases of these theorems.

Therefore, these theorems provide the techniques for finding

distributions of random variables which result from products,

quotients, and powers of an arbitrary number of independent and

dependent random variables. The only restriction is that any one

random variable is correlated to at most only one other random

variable.

-- U

W-. %

.S
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CHAPTER 3

The H-function

3.1 General Remarks

The H-function was first introduced by Fox in 1961 as a

symmetric Fourier kernel to the G-function of Meijer and was used

extensively in physics and engineering. Carter (3) demonstrated the

importance of this function in statistical applications when viewed as

a probability distribution. The reasons for this importance are

two-fold. First, the H-function is the most general special function,

containing most of the other special functions as special cases.

Thus, anything accomplished with the general form for the H1-function

9.

is valid for all special cases. This allows the user to solve a

problem for a large class of functions with a single derivation.

The second advantage to H-functions is readily seen in the

following sections. The properties of the 11-function are such that

they are reduced to simple adjustments of given parameters. The

simple parameter changes needed to find the Mellin transforms or the

derivatives of an H-function are trivial compared to performing these

same operations for various special cases. Indeed, the derivative of

an 11-function is another H1-function.

Carter (3) used these properties to show that products,

quotients, and rational powers of independent H-function variates

yield a random variable which also follows an H-function distribution.

These results provide a robust method for determining algebraic

54
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combinations of independent random variables and strong motivation for

extension of this theory to bivariate distributions.

A G-function of two variables was given by Sharma (34) in an

attempt to generalize classes of functions of two variables. Since

the H-function given by Fox is not a special case of this function,

several workers have extended the univariate H-function and called it

an H-function of two variables. The H-function of two variables

contains as special cases most of the known functions of one and two

*variables, Appell's functions, G-function of two variables, Whittaker

functions of two variables, 1-function of one variable, product of two

H-functions, etc.

Chapter 4 presents the bivariate H-function distribution, a

-' bivariate probability function, expressed in terms of an H-function

times an appropriate constant. Some of the classical bivariate

distributions are shown to be special cases of the bivariate

H-function distribution. Methods for solving resultant distributions

,'. derived from products and quotients of dependent 11-function variates

are presented. The important result is that such combinations result

in a distribution that is an 1-function distribution of one variable.

. Finally, methods for handling products and quotients of dependent

H-function variates from two bivariate H-function distributions which

are pairwise independent are given. Such combinations result in

distributions which are also bivariate H-function distributions.

-p,%
4. .',"; 5 " '....'.... ''''' ''''''.''""% .. ''' ,' ,.'%. '""''% " ,'i% %-., ".:.," . ', .. * d .G ,, ,, .,



56

3.2 Definitions. (5:32;7:93;3:35;14:25;69:37;12)

Although there are slight variations in the definition of the

H-function, this paper uses the l-function of one variable given by

Cook (5:32) and a slight modification to the definition of the

bivariate H-function given by Goyal (69:37). The H-function of one

variable may be defined by

H(z) = H M,N [ z : (b.,. ) ; (4j, .) I
P,Q

r..-. 4 r(j@s) a r 1 -ej-0 S)

i"1 /jlj=1 Z-s
-"= If zr ds (3.1)

2 f i C P Q
a- 11 r(%- 40s) a rl-- -S)

J-N+I j1+l 4

where C is a contour in the complex s-plane running from w-ia to w+i,.

The following assumptions are made.

(i) M, N, P, Q are integers such that O<<Q and O<N<P

(ii) parameters ij, Oj are complex numbers and Oj, Ij are

positive real numbers

(iii) empty products are defined to be equal to unity

(iv) all poles of r(+ 4js) lie to the left of C, and all poles

of r(1-vj -Ojs) lie to the right
$

The bivariate H-function is defined by

5-_-,

OP5

-IP
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(eiqEi)

H~x,y] H Ml'I'M 2,N 2,M3,N 3  x (a1,Ai) ; (c1,C1 )

plQlP 2,Q29 P3,Q3  yl (fi,Fi)

1 . f xSI.y S2 d S 32

(ii2  ~1~ 1 (-sl)x 2 (-s2 )x3 &-sl.s 2 )x y ISd2  32

* where an empty product is denoted by unity, C1 is a contour in the

complex s1 plane running from h-i- to hi-, C2 is a contour in the

*complex s 2 plane running from w-ia. to w+i-, and

H 1  N1

x1(-S1 ) (3.31

11 r(a i.Ais1) .1 r(l-b14.Bis1)

NlN 2

x(s) i r (d -D s) A r(l-c +C s)
x (g) 1 11 12(34

* 22 p2
a +r(ci-cis 2) a r(l-di+Dis2)

2 21

H N3
ii r(ei-Ei( sl+s 2)) A r(l-fi+Fi(sl+s2))

X3  -11 (3.5)
r 3  Q 3'1 r(f i-Fi(sl+s2)) ii r(1-ej-IEi(s1+s 2))

N 3+1 
3+1
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The following assumptions are made.

(M) Hi, Ni, Pit Qi, i-1,2,3 are non-negative integers such that

O<N i<i, o i<_ i , 1-1,2,3 -

(ii) parameters a1 , bi, ci, di, ei, fi are real or complex and

parameters Ai, Bi , Ci, Di , Ei , F1 are real positive numbers

(ilia) poles of r(bi-Bisi), (i-i°..M1 ), r(ei-Ei(sl+s2 )),

(i1...M 3 ) lie to the right of C1 and poles of r(l-ai+AiSl),

(i-l...N 1 ), r(1-ft+Fi(sl+s2 ), (i-l...N 3 ) lie to the left

(iva) poles of r(d-Dls2 ), (I=I...M 2 ), r(ei-Ei(sl+s 2 ), (i-l..-. 3 )

lie to the right of C2 and poles of r(l-ci+Cis 2 ), (i-l...N 2 ),

r(i-fi+Fi(Sl+S 2 )), (iI...N3 ) lie to the left.

If -S is substituted for s I and -s2 for s2 and recognizing

that

a b

f f(-s)d(-s) - f f(-s)ds

b a

and perform that operation twice, then H[x,y] may be redefined as

5-- 1

*1 _s -1 _s2
H[x,y] - f x(S)X 2 (S2 )X3(S+S 2 )X Y dslds 2  (3.6)

(2-' 21 Cl C2
•~ 2t

where

.

O,
V.P

5?



59

XS 1 1 (3.7)
P1  Q1
ai r(ai+Aisl) I (-bBs)

M 2. N2
11 r~d 1+Di2) I r(l-c 1-Cis2 )(38

X 2 (s 2 ) M = 38

iL r(ci+c~s 2) aI r~l-d1 -Dis 2 )
N2+1 H42+1

41 r(ei+Ei(sl1  2)i ~lf-is+s2))
X 3 (sl+s2 ) - 1 1 (3.9)

P 3  Q3
N i r(f1+Fi(si+s2)) H a r(l-e 1-Ej(s1+s2))

Assumptions (i) and: (ii) remain unchanged ani assumptions (iiia) and

(iva) are changed to

Cluib) poles of r(bi+Bisl), (l.M),r(ei+Ei(sl+s 2)).

-* (i-1...M3) lie to the left of C1 and poles of r(1-a1-Aisl),

* (i-l...N1 ), r(l-f1-Fi(sl+s2)), (i-l...N3 ) lie to the right.

(ivb) poles of r(d i+Dis2)- (i-l...M 2), r(ej4-Ei(sl+s 2)),
* (i-1...M3) lie to the left of C. and poles of F(-c-is)

0 (1-1...N 2), r(l-fi-Fi(sl+s2)), (i1...N 3) lie to the right.

This second form of the definition has an advantage in that it

is of the form of a double Hellin integral transform inversion

* integral. Form (3.6) of the H-function definition is used hereafter,
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because of the direct relation for the Hellin transform.

Form (3.6) of the -function definition is useful in that its

Mellin transform is x1 (Sl)X 2(s2)X3(sl+s2). It is clear from this

definition that the bivariate H-function can represent functions whose

Hellin transforms have terms of the form x3(sl+s2) or 3(-sl-s2).

Practically speaking, it is very likely that a great many functions

will have Mellin transforms with terms of the form x3 (sl-s 2 ) or

X3( 2 s) It is possible to modify definition (3.6) to accomodate

* such functions.

Using definition (3.6), if -sI is substituted for sl, then an

equivalent representation for (3.6) is

y - 1 f f l Xl(-sl)x 2(s2 )x3(-sl+s 2 )x y-s2 dSlds2  (3.10)
.'.H~x,y] I ylC

(2iri) C 1  C2

Similarly, if -2 is substituted for S2 in (3.6)

LH[X,y] - I $ f f x(Sl)x2(-s2)x3(sl-s2)X ys 2 dsldS 2  (3.11)":(2n--i)' C1 C2

where the poles of the x2 and the x3 terms are interchanged about the

C2 axis in the s2 plane for (3.11) and the poles of the x, and the x3

terms are interchanged about the C1 axis in the sl plane for (3.10).

From this it is clear that the mathematics of the H-function

can handle functions whose Hellin transforms have terms of the form

x3 (sl-s 2 ) or x3(s2-s1 ). Definition (3.6) can now be modified to

accomodate such functions.

- I
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Definition: A bivariate functional whose Mellin transform is given by

X1 (sl)x 2 (-s2 )x3(sl-s 2) has the bivariate H-function given by

(eiE 1 )

M1 ,N,M 2,N2,s 3,N3  x (ai,Ai) ; (ci,Ci)

] 2p,QIP2,Q2,3,Q 3  Y (fi,Fi)

(blB i ) ; (di,D i )

-Sl yS2

S2 f x l(sl)x 2(s2 )x3(sl+s2)x y dslds 2  (3.12)
(2ti)2  c1 C2

where x1(sl), x2(s2), and x3(sl+s 2) are defined by (3.7), (3.8), and

(3.9). Assumptions (I), (ii), (iiib), and (ivb) hold.

Henceforth, Ifx,y] shall be used to denote definition (3.6)

and 2H[x,yJ to denote definition (3.12). The relationship between

1H[x,y] and 2H[x,y] is readily derived by observing that y may be

rewritten as (1/y) -s 2 in (3.12). Comparing (3.12) with this

substitution to (3.6), it is readily seen that the following

Srelationship holds.

2H[x,yl - 1 I[x,l/y] (3.13)

62

3.3 Properties: (14:24-25;69:39-41;12)

Making a change of variable substitution in (3.2) yields the

following identities which are useful in bivariate manipulations:

V V 1I
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(e~,~

H~xy) H HNlM2,2,HN3 1/x (ai,Ai); c.)

1' j.~ 2,N2 ,M3 ,N3 (cC)

*Ql,Pl 1Q2 ,P2,Q3,P3  y (1-ei,Ei)

For k > 0, the following is true.

(e1 k)

k2 rHNlH,214,3 x (a1 ,kA1 ) ; (c1 1kC1 )

p l1QlP 2,Q2,p3,Q3  yk (f1,kF1 )

L (b1,kB1 ) ; (d1,kD1)

'P (e 1 ,E 1 )

rH Hl~~2N'3N ~iA);(,C)(3.15)
0 P1 1 Ql,P 2 ,Q2,P3,Q3  y (f1,F1)

L (bi,Bi) ; (di,D 1)j

IL
0
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% Making use of the Mellin transform property M { yr~f (xyYSis X,Y)

s l's +n( fX,y(x,y) Ithe following property is obtained.

(eiE 1 )

x Y 1H P lQ,p 21Q2 ,P39Q3  y fqi

(e iEi)mni

M1 ,Nl9M29 N21M3 ,N3  x CaiA,Ai) ; (cii,Ci)

21 P1 ,Ql1 p2,Q2,p3,Q3  yl (fiFi)mnj

* ~~(eiqg~~ Ei)

M1, HlN 1 9M2 ,N2 ,m3 1N3  xj (aiqAaA) ; (c C nC

P (3.17))P1,Ql-P2,Q21 P33 Q3  >y(iF~mni

* ~~(bi+i,Bi) ; (dD nDj

L J

U,.i~ 
- ), i

*5' ' . U *21N ,m N ai+ im A . ;* ( C . . . . . .
2H (3.17)*C*

*%.% l-.pQ ,3Q y 
'VA

5
'-),i
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3.4 Mellin Transform: (3:37;5:35;7:102;12)

Definition (3.1) of the 1l-function is exactly that of a Mellin

transform inversion integral so that the Mellin transform of the

H-function is directly given as

M N
a roi+Oi) Ar (i-ai-o1s)

Ms{H(cz)}  c- s i r1 + (3.18)P Q
11 r(9 +Ois ) a r(l- i-Ois )

i-N+l i-M+l

pForm (3.6) of the bivariate H-function definition is exactly

that of a double Mellin transform inversion integral, so that the

Mellin integral transform of IH[x,yJ is directly given as

-s1 -s2

sl,s2 1  1[g9xg2y] ) xl(sl)x 2(s2 )x3 (sl+s2)g1  g2  (3.19)

where X1 (sl), x2(s2 ), and x3(sl+s2 ) are defined by equations (3.7),

(3.8), and (3.9) respectively.

Under definition (3.12) for 2H[x,y] and assuming convergence

of the integral in the definition, the Mellin transform can be found

by interpreting the bivariate H-function as the inverse Mellin

transform of the coefficients on x y Then

H191I92I x-s I  -s 2 sd
2 2 x1(s1 )x2 (-s2)x3(sl1s2 )(gl )  (g2y) dSlds 2

(27ri) C1 C2

where
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3~ N 3x 41 r(ei+Ei(sl-s 2 )) 3 r(l-fi-Fi(sl-S 2))
X3 (sl-s 2 ) - 1 1(320)

A3 r(fi+Fi(st-s 2)) Q3 r(I-eiCE i(sl-s 2))* N3+1  H3+1

Using the definition of the Mellin transform, one can express

2H[glx,g2 y] in the form

-1 -SI -s2
2H[glxg 2y M2  xl(sl)x 2 (-s2 )x3(sl-s 2)g1  g2

where is the inverse operation for the double Hellin transform as

defined by Fox (10). It follows that

.... s -s2

s {21 [g 1xg 2y11 = xl(sl)x 2 (-s2 )x3 (sl-s 2)g1  g2  (3.21)

3.5 Special Cases: (14:26-28;16:569-571;12)

From the results of Reed (16) on double Mellin transforms of

Appells functions, the following special cases for the H-function of

two variables may be derived.

,,.. ( -c , )

(.

-" r(a)r(b)r (b')F1 (a,b,b' ;c ;-x,-y) (3.22)

-0_.

. . p '*' , .*.a.'.*.*;S . *;. * ~~
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1H1,2,1,2,1,0 y

=r(a)r(b)r(b') F(
r(c)r(c') 2(a,b,b';c,c';-x,-y) (3.23)

(0,1) ;(0,1)

~~(rbb) F3(a,a ',b,b';c;-x,-Y) (3.24)

1,0,1,0,0,2 
x 

- -1H 10202,2,0 y (1-a,].), (1-b, 1)

r(c)r(c') F4(a,b;c,c';-x,-Y) (3.25)

In addition to the special cases listed above, athai andI
* Saxena (14:26) provide an H-function of two variables identity for

-%LIV



67

Kamup- de Feri~t's function.

1,B,1,BOA x (1- t, (1b'

A al;...aA
A B

* 1 r(a1 ) a r(bi)r(bi') B b1,blf; ...bB~B b X

C D C c,;...c
ii r(c0) n r(di)r(di') D d~u;.d~D

1 Dxd.

The identity given by H'athai and Saxena is of a slightly

-~ different form due to the fact that they used the definition of the

form of (3.2). The identity above results from the definition for the

H-function of two variables given by (3.6).

if M =N =P3- 3 O the H-function of two variables breaks up

Sinto a prodluct of two H-functions.

,MN 1,M-,N2 0,O x (aiAi) (ciCi)

1H Q QQ y

L. (bi*Bi) (di,D)

.. 2.-~
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MJNl x (ai,Ai)] 1 H M2 N2 L (c1,-C1)1
H Ix J H i (3.27)
P1 ,Q L (biBj) P2 ,Q2  (di,D i )

- HI(x)-H 2 (y)

Here, Hl(x) and H 2 (y) are univariate H-functions as defined by

(3.1). Similar results hold for 2Hlx,y].

M N 0",2'N2'0,O x (ai,A i) ; (ciCi)
2P lQlP2,Q2,0,0 y---

(biB ) ; (diD ) _ j

- M 1,N ( ai,Ai) 1 N2 (l-d1,D1 ) 1 (.8-H -H." yl (3.28)
PJQJ (biBi)J Q2,P2 I (li-ciC)J

From (3.27) and (3.28), it is clear that for Mi-NiMPi Qi-O ,

1-2,3, the bivariate H-function reduces to a univariate H-function as

defined by (3.1). It then stands to reason that distributional

analysis of products and quotients of H-function variates in the

univariate domain is a special case of distributional analysis of

H-functions of higher order. This fact shall be demonstrated in

Chapter 4.

Example 3.1: Consider once again Morgensterm's bivariate uniform

distribution. The double Mellin transform was given in Example 2.2 as

* -
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"; ip(s I  )(s2  )
lii M~X,y(sl's2) = .-

sys2 SS2(S1 + 1)(s2 + 1)

Noting that (s + n) = r(s + n + 1)
r(s + n)

' X,y(SlIS2) may be rewritten in terms of gamma functions.

r (sI)r(s 2) pr(sl)r(s2 )r(si)r(s 2)HX,y(slIs 2 ) = (l)rs s+) f(Sl+2)r(s2+2)r(si-l)r( s2-1)

* While this form is not immediately expressible as a single H-function
-"

of two variables, it may be redefined as a sum of two H-functions of

two variables.

-we f X,Y (xy) - H1[ x,y I + 112[ x,y I

,'.'. .where

1,0,1,0,0,0 x (1,l) ; (1,I)
..HI[ x,y --1-0-

and

-212 xly P111
.... 2,2,2,2,0,0 y

L.. ( , ),(0,1) 0 1 , , )

4....
0'."

O.
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In this instance, it must be remembered that Hl[ x,y ] and

H2[ x,y ] are not FH-functional representations of density functions,

but are two general H-functions of two variables, the sum of which is

a bivariate density representation.

While it is desirable to formulate fx,y(x,y) as a single

H-function of two variables, the representation above is still

valuable in that given Z - XY or Z - X/Y, fz(z) may be represented as

the sum of two H-functions of one variable which can be derived from

H[ x,y ] and 1121 x,y 1. Numerical inversion of Hj[ z I and

2[ z I can be accomplished by methods presented by Eldred and Cook.

Numerical evaluation of fZ(z) can then be derived by appropriately

summing the inversions of HI[ z I and H21 z I-

".
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CUAPTER 4

The H-function Distribution

4.1 General Remarks

In this chapter a new bivariate probability density function

based on the H-function of two variables is introduced. The new

distribution, called the bivariate H-function listribution, includes

as special cases many of the more common bivariate distributions - the

bivariate gamma, the bivariate beta, and the bivariate Cauchy. Three

new bivariate distributions, called the Kellogg-Barnes distributions,

are also shown to be special cases of the bivariate H-function

distribution. Also, by extension, all the univarlate 11-function

distributions are special cases.

Formulas for finding the moments of the bivariate H-function

distribution and the normalizing constant are given. The cumulative

of the bivariate H-function distribution is shown to be another

H1-function, a property that is not shared by other bivariate

distributions. Examples are given.

% 4.2 Definitions:

Definition: Consider a random variable Z with probability

density function given by

k H(cz), cz E Sfz(z) - (4.1)

0, otherwise

where H(cz) represents a univariate H-function as defined in section

3.2, k and c are real constants such that

71

.C, % 4I1-.
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2-:')7 ; z) dz 1

V'#J and S is a subset of the positive real values u for which H(u) is

convergent. The random variable Z will then be called an H-function

variate or a random variable with an H-function listribution

(3: 41;7: 103;5:84;17:200).

Definition: Consider the random variables X, Y with joint

probability density function given by

r H[glx'g2y] , glx e S1 , g2y S2fxy(x,y) - (4.2)L 0, otherwise

where rH[glx,g2] represents an H-function as defined in section 3.2,

k, g1, and g2 are real constants such that

.J. fX,y(x,y) dxdy -I0 03

and S,S 2 are subsets of the positive real values u,v for which H(u,v)

is convergent. The random variables K, Y will then be called

dependent 11-function variates or random variables with a bivariate

H-function distribution.

4.3 Special Cases

[.4 Since the univariate H-function distribution may be expressed

as a special case of (4.2), all of the classical univariate

non-negative probability distributions studied by Carter (1972),

Eldred (1979), and Cook (1931) are special cases of the bivariate

%.

LAA*%4
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. .1H-function distribution. In addition, some of the classical

non-negative bivariate distributions may be expressed in the form

- (4.2). Converting a probability density function into its H1-function

form is accomplished by taking the Mellin transform of the density

function and arranging the transform such that it is products and

quotients of gamma functions. The H-function form may then be

identified by taking the inverse Mellin transform.

i.) McKay's bivariate gamma distribution

fx,y(X,y) = a Y
p -  (yx)q - e-ay y>x>0

r(p)r(q) a,p,q>O

Let c - (ap+q)/(r(p)r(q)). Taking the Mellin transform and

integrating first with respect to x and then with respect to y yields

%' %1- yYq1ea xs - S2- 1

M(sl-s 2 )  cf f xp -I (y-x)q - eayy dxdy
0 0

.- ,c yS2- 1  [y y sl+P-2" c$e -a y Ifx (y -1~- dx] dy

0 0

0 Using the Hellin transform property (2.8), the transform above becomes

s c y2 1 ay [ (y-x) q - 1 dx) dy

"- 0 If X Z-1
l~2 f0y0zmsl+p-l

Using (15:16, # 2.20) to evaluate the inner integral, the transform

ON> can now be written

p.°

%.9..



M~ 1, 2) =cr(q)r(s - - ) f y 1+2 +eay dy

Realizing that the integral is just the gamma function and replacing

the value for c yields

2-s1-s2
a r(p-i+s1 )r(p+q-2+sl+s2)I(s 1,S2) r(p)r(p+q-l+sl)

fX Iy(x,y) is returned by taking the inverse Mellin transform 3iven by

(2.6).

a2  1..L.... r(p-l+sl)r(p+q-2+sl+s2) Si S2
fX,Y(X,Y) a ( 2r) ~ ~ -~ 1  (ax)- (ay)- dsds

(p+q-2,1)

a2 1,0,0,0,1,0 ax (p+q-1,1) ------ 43
F(-3 11110,,, ay

(ii) The bivariate beta distribution

fx y (1-x-y)fx,Y(x,y) - p1)r(p2)r(P3)

Let c = r(pl+P 2+P3)/r(pl)r(P2)r(P3). Tain the Hellin transform and

integrating first with respect to y and then with respect to x yields



75

1 1-x PI71  P2-1 p3-
1  s1-1 S2-1

M(s1,s2) -cf f x y (1-X-y) x y dydx
0 0

-cf 1x [s+il- f -y s2P 1) (1-x-y) P31dyj dx
0 0

Using (15:16 #1 2.20) to evaluate the inner integral and substituting

the value of c, the transform can now be written

%r(P 14-P2-.P3)r(s2+P2-1) x (sr'pi-')- 1 -x s2+P2 4P3-2 d
"(s~s2 -r(pl)r(P 2)r(s2+P2+P3-1) 0

- ' Using (15:16 #t 2.20) once again to evaluate the integral yields

M(s1, 2 r (P1+P2+P3)r(s 1+pl-l )r(s2+P2-1)
l~s2 ' r(pl)r(P2)r(sl+s2Ipl+P24-P3-2)

The I-function form is found by using the Mellin transform identity

for the 1l-function as defined by (3.18) or (3.20).

f X,Y(x,y) 1- M(s 1,92)

r (Pl+P24-P3) 1,0,1,0,0,0r~p 1 r~p 2  1 H(4.4)r~lrP)"0,1,0,1,1,0 y(pl+P 2tP3-2,1)

pP-,) (P-,)

'F,,
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(iii) The quarter Cauchy distribution

f (XY) 2c (c 2 + x 2  y2)-3/2' ]fx,y(X,y) = -- (c+ -y ) , xy>0 , c>0

Letting r,2 - 2 x = cosO, y - sine, and dxdy = rdrdO, the Mellin

transform can be written as

- i/2 S- S-1
M(s1,s2 ) 2c f (rcosO) (rsin6) (C2+r2) - 3 / 2 rdOdr

00

s r l2-1 2+ 3/2 w/2 si-I s21
2c r 1 2(c 2+r_ 2  cose sin2 dO]dr

0 0

-1 - £ B 1+ 2 1 (c2+r2 )-3/2 dr

0

where B(u,v) is the beta function and is given by

B(u,v) - r(u)r(v)
r(u+v)

S Using (15:15 # 2.19) to evaluate the integral and Mellin transform

property (2.8), the transform becomes

-"- cr(sl/2)r(s 2/2) - c r(s1/2+s2/2)r(3/2-sl/2-s2/2)* MlSs2) 3
.... '2 211r(s 1+S2 ) c3r(3/2)

* -4.
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3/2 r(s/2)r(s2/2)r(3/2-sl/2-s2/2)

Using the Mellin transform identity (3.18) for the H-function, the

H-function form for fxy(xy) can be found.

fx,Y(x-Y)  M2 [ M(Sl1S2)

@ 1
1.* 0,2130/2 x (4.5)

ci,-.,0,1,0, 1,1,0 1c.. 2 c32109,,,, y  (-1/2,1/2)
c

L (0,1/2) ; (0,1/2)

(iv) Kellogg-Barnes Type I distribution

f(XY) 4a+1 (x2 + y2)8 e -(x 2 + y2) xY>O
i x'yX'Y = r(o+l) (x2 +  0~>O

The Mellin traiisform for the Kellogg-Barnes I distribution was

computed in Example 2.3 and is given by

M'-1-s-).. ar(sl/2)r(s 2/2)r(O+Sl/2+s2/2)'.'. M(sl,2
1-.'2) s1/2"92/2

Fr(o+l)r(s 1/2+ 2/2)a

Taking the inverse and using the Mellin transform property (3.18) for

the H-function yields

rov.
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fX,Y (x' y ) =M2 [ H(Sl'S 2)

(8,1/2)

1,0,1,0,1,0 ra x

wr(o+1) 1 1,0,1,1,1 +- .(0,1/2)6)

(0,1/2) ; (0,1/2)

(v) Kellogg-Barnes Type II distribution

fx,y(Xy) - 8a2 e-ax - 8y/x x,y>0
0,0>0

The Mellin transform is given as

M(s ,s2) - 802 Cs 2 [1 x dx] dy
0 0

Using (95:313 # 17) to evaluate the inner integral yields

2 s2-1 2(oy/a) K [ 2(a8y) 1 2  dy
M11's2) - 8a 20 Y KSd

82 ($ /2 = s2+ 1/2- Jd

- 20a 2(/) 1 f y K [ 2(cgy)1/ 2 ] dy
0 1

2 482(/a)si/2 s1+2s2- 1

0

where Kv is the modified Bessel function as defined by Erdelyi

AC
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(95:371). Using (95:331 # 26) to complete the Integration yields

M(s1 s2) - B 2 0-Sl-S2 -s2 r(sl+s 2 )r(s2)

fInverting and using the H-function definition (3.6) the H-function

form for fx,y(x,y) is obtained.

f x,y(x-y) =M2-1 M(SlS2)]

(0-1)
,02 9,0,1 ,0 (0.1)

$a B H (4.7)
0,0,0,1,0,1 Moy ..

------; (0,1) I

(vi) Kellogg-Barnes Type III distribution

fxY( cY xc e'-ax - xy x,y>O

r e a,8>0 ,c>2

The Mellin transform is given by

al+1 x s2-1
M(s 1 s2 ) c e y dyj dx

0 0

l-s 2 141l. c-

= I"r2 x • x dxr(c) ( 2 ) 0

l - 2 -sl%!" - r(s 2)r a -2)
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Inverting and using definition (3.12) or using the Mellin transform

property (3.20) for the H-function, the H-function form for fxy(x,y)

is obtained.

fx,y(x,y) - M2-1[ M(slS 2 ) ]

(c,l)

S 0,,0, I,,0 ax . . . ; (1 )

Sr(c) 2 
-(4.8)0,0,1,0,0,1 y

4/Y

4.4 Moments of the H-function Distribution:

Carter (3) showed that the moments of the univariate

H-function distribution can be found by taking the appropriate

derivatives of the characteristic function of the univariate

H-function distribution. To use this approach for the bivariate

H-function distribution, the double Fourier transform of the bivariate

H-function must first be shown to exist. To do this an extension to

Prasad's theorems (57) must be developed. Fortunately, while the

above is considered beyond the scope of this dissertation, there is a

simpler method for obtaining the moment. 3f the bivariate H-function

distribution.

Using the notation of section 1.3, the nl,n2 ordered

noncentral moment for fx,y(X,y), anl,n2, is defined by

L, kl
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E nl n2

nl~~n2 n2Y

x y n n fXy(x~y)dxdy
0 0

where E is the expected value operator. From the definition of the

Mellin transform, it is clear that

* M { f 1-E 1  8241

for distributions defined for ,c,y > 0. The nl,n2 ordered moment for

fX,y('C~y) may then be obtained from the Hellin transform of the

probability density function. Specifically,

n ,n2 0 M 1 8 { f x, ( , )i n~ w

s2-n2+1

Then from the Mellin transform property (3.18) of the bivariate

H-function, the nl,n2 ordered moment for k Hlglx,g2yl is given by

nL~n kl1 n+ xl(nl+l)x2(n2+l)x 3(n4-n2+2) (4.9)
nln g 1  2 +

where x(uxv) and X3(u+v) are defined by (3.7), (3.8), and (3.9)

respectively.

Similarly, from the Hellin transform property (3.20) of the

bivariate H-function, the nl,n2 ordered moment for k Hlglx,8 2y) is

given by

6i

ft

0.- ~*~*** ">~*~v*~.-.~-:.;~.*..***.%%
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OL k x~llx(n-

nln2 n1 nl xn(nl++)x2( -n2-1 )x3(nl-n2) (4.10)

where X1 (U), x2(-v), and x3(u-v) are defined by (3.7), (3.4), and

(3.19) respectively.

Following the procedures outlined in section 1.3, (4.9) and

2 2(4.10) above can be used to find Px9 Pyt Ixy' a and a y From

these values, the covariance and correlation for X and Y may be found.

Example 4.1: From (4.3), McKay's bivariate gamma distribution can be

represented as a bivariate H-function distribution.

(p+q-2,1)

2 1,0,0,0,1,0 ax (p+q-1,1) ;-----

1,1,0,0,0,1 ay

(p-I, i) ;- - -

Using (4.9), px may be found by setting nl = 1 and n2 - 0.

a2 r(p+1)r(p+q+l)
x 1,0 a3  r(p)r(p+q+l)

= p/a

Similarly,

= a2 r(p)r(p+q+l)aY " O, l 3
y a r(p)r(p+q)

- (p+q)/a

4I

=::

4.i

*. .' *,.- .. -,p , , . . -,. , -. . . . . . .-. . .,- ., , ,- . ,. , - ..-. ,,,.. . .
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Using the Identities a 2 - - and a 2 -th

x 20 10y 02 '' h

variances may be found.

2 _ 2 r(p+2)r(p+q+2) - /a2

x a4  r(p)r(p+q+2) (/a

.
%.~l -

2 °2

a2  a

-.p/a2

Similarly,
2 2

2 .a r(p)r(pi+2) _ (p/)2

y 42

a r(p)r(p+q) a

. (p+q+l)(p+q) _

a 2 a 2

- (p+q)/a
2

Using (1.10), the covariance may be found by

cov(x,y) a a l,

2S2 a2 r(p+l)r(p+q+2) p(p+q)

-.. y 4 2

a r(p)r(p+q+l) 2

- p/a
2

Finally, the correlation is equal to the covariance divided by the

standard deviations for x and y.

t'4
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"p..P(x,y) -cov(x,y)Io ax y

~ ~. The moments computed above agree with those given by Mardia

(47:89) for the bivariate gamma distribution. The moments for all six

of the special cases of the H-function distribution given in section

4.3 were computed using (4.9) or (4.10) and agreed with those given by

Mardia or computed using the equations given in section 4.4.

* . 4.5 Cumulative Distribution Functions:

4.5.1 Univariate Cumulative Distribution

% %The cumulative distribution function H c(z) of a probability

density function H(z) is defined as

d z

Hc (z) f H(u)du
0

00

Using a well-known Mellin transform relation from Erdelyi.

h95:307), Eldred (7:139) derived an expression for H (z). Cook

(5:103) improved on this expression and derived the form

M+19N [c B+P 91 1
H (z) -1 -(k/c) H cz(4.11)

cP+l,Q+1 L 0,0,0Yj44J
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Cook then showed a second formulation for the cumulative

distribution and proved that the cumulative distribution function for

an H-function distribution is another H-function. Using the Laplace

transform, Cook derived the following:

(M,N+1 [ 100 G*
(k/c) H I cz I ]

P+l,Q+I (Lj- j, j),(0, )

all - /j< 1,JI,.,

(-k /c ) H L cz ( +  0E  ) ( 1' l ) ; ]

P+l,Q+l (010),(1j+4jtJ)

if any -j/$j > 1, j-l,...,M

(4.12)

'c (z) can also be computed using the Mellin transform property

for integrals given by Oberhettinger (15:12) and Sneddon (106:269).

z

M s f f(u)du - I+ f(z) )
0 s

Letting -1/s = r(-s)/r(l-s) results in (4.12) case I and letting -1/s

- -r(s)/r(s+l) results in (4.12) case II.

Comparing (4.11) to (4.12) case I, it appears at first glance

that one of the two formulations must be in error. The Laplace

transform introduced by Carter (3) can result in one or more of the

poles associated with the (OjOj) overlapping with the poles

-4

• .
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associated with the new (0,1) term in the numerator. Under such

conditions, no contour exists to properly separate the poles. To

correct this problem, Cook (5:81) eliminates the overlap by using an

equivalent expression for the F(l-s) term introduced in the

development of the Laplace transform of the H-function. The

replacement of this equivalent identity results in (4.12) case II.

Assume -/0j 1 for some J. Then (4.12) case II is valid

and (4.11) is not valid. Further, (4.11) is only invalid if the poles

associated with r(l-O -s - a) overlap with the poles associated with

the new term r(s). However, these poles will only overlap if

( j1j0 > I for some J, j - 1,...,N. Now consider the poles of the

density function. If this condition holds, then some of the poles of

r(oj+4js), (for -0j/4j), will occur at values of s > I and some of the

poles of r(-e1-O s), (for 8j+Gj > 1), will occur at values of s < I.

By definition (3.1) such an overlap of poles is not allowable.

Therefore, the condition of will never occur in H-function

distributions and the cumulative distribution is given by (4.12) case

I only. These results are summarized in the following theorem.

THEOREM 4.1: If kH(cz) is an H-function probability density function

as defined by (4.1), then -01/0 1, J ,...,I.

From the discussion above, it would seem that it should also

be true, for the same reasons, that (9 +0 ) < I. While a check of all
he s8
the special cases listed by Cook, (6:85-87), support this idea, it is
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not possible to go from (4.11) to (4.12) and prove that this is true

in general.

It should also be pointed out that the improved Laplace

transform for the H-function as given by Cook (6:82) is not in error.

Specifically, it does not necessarily hold that -0/0j < 1 ,

j - 1,...,N, for the H-function in general. It is only true if the

H-function is a density function.

r -4.5.2 Bivariate Cumulative Distribution

The cumulative distribution function H [xy] associated with

the probability density function, Hfx,y] is defined by

L% xy
[xY] f H[u,v] dudvc 0 0

H [x,y] can be obtained by direct integration or through thec

use of the Mellin transform of H[x,y]. The latter method is most

often preferable as it avoids the necessity of evaluating Hfx,yJ in

order to derive H [x,y ].c

The use of the preceding procedures in evaluating H [x,y] is

made possible by noting from equation (2.14) that

.H. 9 I -McxY] }"(8182)-I Ms81+118+ H[x~y]

Inverting the equation above and subtracting one from both sides

. .yields

r'?': .. . .a
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1c[x,yJ - I - ( s[Xy] M

Consider first 1H[x,y]. Substituting the Mellin transform for iH(x,y]

given by (3.18) into the equation above and replacing sI by sl+1 and

s2 by s2+1 yields

[:_ H[xy=1- 2-1[ k -i -s2

1 HI[X y1 - g1g2SMs2 xl(sl+1)x 2 (s2+2)x3(sl+s 2+2)gl g2  ]

where xl(u), x2(v), and x3(u+v) are defined by (3.7), (3.8), and (3.9)

respectively. Recognizing that

1_ r(sl)r(s 2)

S182 r(Sl+l)r(s2+1)

Substituting this identity into the inversion above yields
.. .,

" 1H [x,yJ - 1 -

!L M r(s1) r (s2 )  +2g-81 -827
9192  2 -1[12 x1 (s1+l)x2 (s2+l)x3(sl+ 2+2)g 1  g2

*- Completing the inversion and using the bivariate H-function definition

(3.6), the cumulative H-function form may be found.

p%"
0::

0
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H fx,y] Inic
(e i+2Ei ,E1)

H 1 1 9 2 I 2 13 '3  glx (ai+Ai,Ai),(,);(ci+Ci,Ci)(,1)

1 P1+1,Ql+lP 2+1,Q2+1,P3 'Q3  g2Y (fi+2FiFi)

L (O,l),(b i+Bi#Bi);(O,1),(d i+DiD,)-

where K -k/g~g (4.13)

Using property (3.16), m -n -1, equation (4.13) can be written as

*%. .4 ~ ~ iHc[x,y]

-~ (ei,Ei)

I P1+1,Ql+1,P2+lQ 2+l'P3,Q3  g2y (fi'Fi)

where K - kxy (4.14)

Using the same procedure outlined above, a similar

* representation can be obtained for the cumulative distribution

function for 2Hrx,yJ.
'p2
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A IxY 1-

(eiEi)

M1+I,NIM 2,N2+1,M3,N3  glx (ai+AiAi),(1,1); (1, 1),(ci-C1 ,Ci)

K 2H g1X1(fiFi), PI~+,QI+'IP2+'IQ2+l, P3,Q3 92y (f,)

~~(0.1), (b i+Bt, BI) ;(dl-D ,DI), (O, )-

where K - k/g g2  (4.15)

Using property (3.17), m = n 1 1, equation (4.15) can be written as

2H [x'Y1 - 1 -
eiEj)

KM1+1,N M2 N2+IH 3,N3  glx (ai9Ai),(O'l) ; (2,1),(ct,C 1 )
K2

Pl+lQI+1, P2+l1Q 2+lP 3,Q3 g2y (fl,Fi)

where K - kxy (4.16)

As indicated by (4.14) and (4.16), rHcfx-y) can be found at

the same time as rH[x,y] by using the calculations for the residues of

rH[x,y]. For iHix,y), multiply each residue in the '2 plane by

l/(s2-1), and then add the pole s2-l (or increasing by 1 the order of

an existing pole at a2-1). For 2H[x,yJ, multiply each residue in the

s2 plane by 1/(-1-s2), and then add the pole s2-1 (or increasing by I

the order of an existing pole at s2-l). For both iH[x,yJ and

2H[x,y], multiply each residue in the sI plane by 1/(sl-1), and then

add the pole Sl-l.

L.
" |
.**V:4 ?U J, '- - - -
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Another.f.mula.for.he.c.mul.ive.distriut.on.funt.on .of.a

AnoRM4.:The formuafrte cumulative distribution function o an

bivariate H-function probability density function is a bivariate

H-function.

Extending the Mellin transform for integrals, (15:12;106:269),

to two variables and letting -1/sl - (-sl)/r(l-sl) and -1/s2

r(-s2)/r(l-s 2) yields the bivariate Mellin transform property

M if f f(u,v)dudv} M (f(x,y)) (4.17)
s 182 0 0 r(l sl)r(ls2 s 51+1,82+1

This property may also be obtained as a simple perturbation of

property (2.14).

Applying (4.17) and (3.18) to 1Hjx,yJ yields

*1 1H(-slx(-s2 -9 
-

M 2 919r~isl~(1-2)x l(s1+l)x2(s2+1)x3(sl+ 2+2) 1 92 SJ
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(e i+2Ei ,Ei

M1,N +1, 2,N2+1,M3,N3  glx (1,l),(ai+Ai,Ai);(1,l),(ci+Ci,C1 )
- KIH

P1+l,QI+lP 2+l,Q2+lP 3,Q3 92Y (fi+2Fi,Fi)

(bi+BiBi),(0,1);(di+Di,Di),(0,1 )

where K = k/g g2  (4.18)

1Hc[x,y] may also be obtained by reversing the order of

integration of the cumulative distribution function integral and the

bivariate H-function contour integral. Let

k 1 -s I -sH[x,y] 2 k i (-)(9,x) (g2y) ds dS 2(2wi) 2

where $$ represents the bivariate H-function contour integrals as

defined by (3.6) and (-) represents the gamma products in the

- bivariate H-function definition (3.6) which do not depend on the

variables x and y. Assuming convergence of the H-function, then

x y -S
Hcx,y f k (1) (-)(glu) ( ) - s2 dslds 2dudv0 0 (2vi) 

2

kf ) (glu) I (g2v) dvdu ] dslds 2

(2i)2 0 0

k I (-)xy (glx) (g2y) (4.19)(2--i) 2 $ ( - x (1-81)(1-82) d Ld 2 4. 9

A

0:
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,replacing [(1-Sl)(1-s2)]
- 1 by rcl-sl)r(l-s2)/r(2-sl)r(2-s2 ) and using

~(3.6), (4.19) may be expressed as

i ! iHc [,x~y ]

.'.'-" (e i E1 )

-a-..-

KHMJN 1+IM2, N 2+,M 3,N3  glx  (O.i),(ai,A I) ; (0,1),(ci,Ci )

-Ki.l

P +,QI+IP2+lO2+l, P3 Q3 2y  (fiFi)

(blBl),(-l~l) ; (diD),(-ll)

where K -kxy 
(4°20)

Using property (316), m n 1, (4.20) may be expressed as (4.18).

~Using similar procedures, the cumulative distribution function

,%,4 211c[X,y ] for 2H[x,y] may be found and is also given as a btvartate

H-function. Using property (4.17) and the Mellin transform for

2H[x,y], (3.20),1 2Hc[X,y] is given as

H xy] n

a_2..

M kr(-sl)r(-s 2 )  
-s 1-S2I2 "1,N1 l,,N )r+-- XN (sl+)x2(-s2-)x3(s0-s2) (c 92

gi 2y (-fi-,Fi)(ts2

Replacing s by -1 and completing the inversion by use of (3.12), the

U gccumulative distribution function for 2H[x,y] may be 
found and is given

: - by

-r'AI

-,.

1 Rpaig. b n opltn h nerinb s o 31) h
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2H c [x,yJ

(e1,Ei)

- K2 1+1Ql+LP2+LQ2+P3 Q3 g2y (fi,Fi)

* where K - k/g~g (4.21)

Using property (3.17), (4.21) may be expressed as

(eivEj)

K K2 H p 1 ~21 ,2 2 m3 ,3  glx (O,1),(aiAi) ; (ci,Ci),(2,1)

P 1+1,Ql+1,P2+1,Q2+lP 3,Q3 g2YI (fiqFi)

where K -kxy (4.22)

Bivariate Gamma Cumulative Distribution: Applying (4.18) to the

* bivariate gamma probability density function given by (4.3),

a ~ uxy - (v-uV1' -a dudv
111c[x,Y1 r(p)r(q) 0 0 u 1C
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(p+q, 1

r(p) 12,2,1,1,0,1 ay---

y>x>0 , a,p,q>0 (4.23)

Bivariate Beta Cumulative Distribution: Applying (4.18) to the

bivariate beta probability density function given by (4.4),

r(pl+P2+P3) XY p1-l 1P 2-
1 (-v P3-1 dd

r(pl)r(p 2)r(p3) 0ol 0

r(pl+p 2+p3) 1,1,110 x(1);(,)
-r(pl)r (P2) 1 1,2 ,1 ,2 1 0  y ( 1 p+ 3 1

x~>, ~ <1,p, 2 p (4.24)

Quarter Cauchy Cumulative Distribution: Applying (4.18) to the

quarter cauchy probability density function given by (4.5),

1H (x,y] 00cI (c2 + u2 + v2)-3/ dudv

1
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32 1,2,1,2,1,0 1 y (1/2,1/2)

x,y>0, c>O (4.25)

Kellogg-Barnes I Cumulative Distribution: Applying (4.18) to the

* Kellogg-Barnes I probability density function given by (4.6),

2-~~ 48+ xy(u

wFB+) 1,2,1,2,1,1 V'a y (1,1/2)

* X,y>0, c,O>0 (4.26)

Kellogg-Barnes II Cumulative Distribution: Applying (4.18) to the

* Kellogg-Barnes II probability density function given by (4.7),



1 7 -. b* VT -V-- N.**** -
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iHc[x,yI O- BQ(a + ar /u) dudv
0 0

(2.1)

-H011110 
a 1l 11

1,1,1,2,0,1 aBy --

X,y>0, Q,0>0 (4.27)

Kellogg-Barnes III Cumulative Distribution: Applying (4.21) to the

Kellogg-Barnes III probability density function given by (4.8),

IHC[x,yJ - f f uc e'(c'u + Buy) dudv

FSc 
.

(c,l)

- 1 0,1,1,1,1,0 Qxx (1.,1) ; (0.1).(1.1)

*F(c 21,101 8 y

(0.1) ;(0,1)

x,y>0, at,0>0, 0>2 (4.28)

4.6 Evaluation of the Bivariate 11-function Constant

Carter (3), Eldred (7), and Springer (18) provide special
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cases and a definition of the univariate H-function distribution.

However, it was Cook (5) who gave a methodology for determining the

normalization constant k in definition (4.1). A similar procedure can

be applied to the bivariate H-function distribution constant.

One approach to finding k is to investigate r Hc [x,y] for large

x and y, since

4.

lim rHc [x,y] lim k(H-function given by (4.18) or (4.21)) - 1.

*- x -.m a

-.. That is, if krHcfx,yJ is a proposed H-function probability density,

use (4.18) or (4.21) to find the associated H-function for the

cumulative distribution function, which for large x and y will be 1/k.

While the above method is feasible, it yields a numerical

approximation. An exact method may be found by equating the right

sides of (4.14) and (4.20), for iH [x,yJ, which immediately yields:
"I.'

%'I

. 2
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l/kxy =

(eiPE1 )

ill MI+I,NIM2+1,N2,M3,N3  
glx (a,A),(O,1) ; (ci,Ci),(O,1)

S 1 +l"Q+'IP2+IQ2+IP3Q g2 Y (fi'F i )

(ei,Ei )

M 1,N+,M2,N2+l,M3,N3  glx (O,l),(ai,A i) ; (O,l),(ci,Ci)
'.-. +3

1Pl+l,Ql+,P 2+,Q 2+lp 3 ,Q3  g2y (fi,Ft)

L (bi9Bi),(-1,l) ; (diDi),(-l.1)J

1 1f i 1 1 (4.29)

(2i)2 (Sl)(s2) (-s2) dSdS2

where If represents the appropriate contour integrals as defined in

(3.6) and ( x) X1 (S1 )x2 (s2 )x3(sl+S2)(glx) ( - 2 also defined in

(3.6).

Compare the residues of the two bivariate H-functions in

(4.29). Inverting with respect to s2, each RHP residue of the first

"* bivariate H-function has a matching RHP residue of the second

bivariate H-function that is exactly equal but opposite in sign,

except at the residue at s2 - 1. Similarly, each LHP residue of che

second has a matching residue of the first that is exactly equal but

opposite in sign, except at the residue at s2 - 1. Similar results

hold true for inverting with respect to s. Therefore, whether (4.29)

.4";,-/-.:" ,....'" p.. ,.,,.e', _ , : - :"-- : " -"''.. ."'' '"'' .'.""" ,- ,"" '.--" -. ' .. .
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is inverted by LHP(sl), LHP(s2 ); LHP(sl), RHP(s 2 ); RHP(sl), LHP(s2 );

or RHP(sl), RHP(s 2 ), it reduces to only one term on the right side:

1 = (+LHP LHP2 residue at sl-s 2-1)

kxy 1 2

- (-LHP RHP residue at s1=S 2=Ml)

- (-RHP sLHP residue at Sl=US2=01)

- (+RHP sRHP residue at S1=S2fl)

1 1

If the bivariate probability density function IHrx,y] has no

pole at s1 - 1 or s2 - 1, then the bivariate cumulative distribution

function 1H [x,y] has a pole of order 1 at sI = 1 and s2 - 1 and

(4.29) reduces to:

H 1 N1  H2
1 I r(b +Bi) Rl r(l-aiAi) 1 r(d +D1 )1 _ 1 

kxyQ P QP
1l r(a l+Aj) n1 r(l-b iBi) R2 r(c,+ci)

N1 +1 M11+1 N2+1

N M N

U 2 r(1-c-Ci) ii3 r(ei+2Ei) H 3 F(3-fi-2Fi)

1 1 1 1 (4.30)

Q2* Q3  gx~I[ r(l-di-Di) nI r(fi+2Fi) R3 r(l-ei-2Ei) 12
M2 +l N3+1 M 3+1

Solving for k and noting the Mellin transform property (3.18),

*%

-. 0 0
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%.1

. k( I/ss2 1H[x,y] } )

52

The above result is summarized in the following theorem.

Theorem 4.3: If 1Hrx,y] is a bivariate H-function probability density

defined by (4.2) for r - 1, such that -bi/Bi < 1, i - I,...,mj ,

-d .. -d /D I  < 1, i - i, ..... ,D2, (ai+A i) < 1, 1 = , .. ,N l, (C i+(:l) < 1,

' I = 1,...,N2, (which implies that iH[x,y) has no pole at s = I,

S 2  1), then

k -= I/M 1 H[x,yl I)
'C,~'s2 Sl:l

s2=1

. P Q, P

nI1 r(ai+Ai) n r(l-b1 -BI ) R2 r(ci+C1 )
N +N+1 N2+1

• .. - glg 2

H.. . 1 r(b +B 1) 11 1 r(la A i) H 2 r(d +Dj)

"-.-1 1 1

0Q 2  P3  Q3.-- r(ld-D) a1 F(fi+2Fi) n r(l-el-2Ei)
-2+1 N3+1 M3+1 (4.31)

-e...N M 3  N 3

N2  13 13
0- 1 r(1-c -ci) II r(ei+2E) 1R r(1-fi-2Ft)

J.--

Example 4.2: Consider the probability density function given by

afXy(XY) 
= ke mx - By/x x,y>O

V4O . . * * - * * ° - - . . . . - . .. ab
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(0,1)

-'ZV HO,0, 1,0,1,0 CM ...
- k 1 0,0,0,1,0,1 Q y

-. ; (0,1)

from Theorem 4.3, k is given as

k -(cs)(ca) 12
r(1)r(2)

which agrees with the definition of the Kellogg-Barnes II probability

density function.

The five special cases of the bivariate H-function probability

density functions given in section 4.3 all meet the conditions of

Theorem 4.3 and their constants agree with (4.31)

The normalizing constant for 2H[x,yl may be found in the same

fashion by equating the right sides of (4.16) and (4.22),

• " o

-4 ..

o ..

"'.

* l'* % .O.m~
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l/kxy

N-, (eivE)
Z

M 1M+1,NlM 2 N2+1'M3,N3  glx (ai,Ai),(0,1) ; (2,1),(ci,Ci)

- 2P+,QI+Ip2+IQ2+1,P3,Q3 g2y (fiFi)

(eiEi)

M MINI+lM 2+L,N2,M3 ,N3  glx (O,l),(ai,A i) ; (ci,Ci),(
2,l)

+2
P1+,QI+lP 2+lQ 2+lp 3 ,Q3  g2y (fiFi)

4e.

= 11 ( + 1) dsids 2  (4.32)

(2w i 2 [(-1)(-1-s2) (1-sl)(1+s2)

where fi represents the appropriate contour integrals as defined in

(3.6) and (-) 1 x2(s1 )x2(s2)x3(s1+s2)(glx) (g2y also defined in

(3.6).

Compare the residues of the two H-functions in (4.32).

Inverting with respect to 2, each RHP residue of the second

H-function has a matching RHP residue of the first H-function that is

,exactly equal but opposite in sign, except at the residue a2 = -1.

Similarly, each LHP residue of the first has a matching residue of the

second that is exactly equal but opposite in sign, except at the

residue at *2 - -1. Similar results hold true for inverting with

respect to 91 except that extra pole is at sI 1.C.o
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If the probability density function 2H[x,yl has no pole at

a - 1 and s2 - 1, then the cumulative distribution function 2Hc[x,y]

has a pole of order 1 at s1 - 1 and s2 = -1 and (4.32) reduces to

V.

11 r(bi+Bi) R r(l-aiAi) 12 r(di-Di)
1 - 11 1

kxy PQ

N+ r(ai+Ai) H 1 r(l-bi-Bi) I2 r(ci-Ci)
1M+I N2+l

N2  M N
R2 r(l-ci+Ci) 13 r(ei) a r(l-fi)

1 1 (433)

P3  glxg2yI2 r(-d+Di) I3 r(fi) n3 r(lei)
M2 +l N3+1 M3+1

solving for k and noting the Mellin transform property (3.21) yields

k - ( /Ms ( 2H[xy] ) )n
2 =1

s2inl

The above result is summarized in the following theorem.

Theorem 4.4: If 2H[x,y] is a bivariate H-function probability density

defined by (4.2) for r - 2, such that -bi/Bi < 1, i = 1,...,M1,

d i/D I > 1, 1 - 1,...,M2, (ai+Ai) < 1, 1 - 1,...,N1, (ci-Ci) < 1,

i - 1,...,N 2, (which implies that 2H1x,y] has no pole at a, - 1

or a 2 -- 1), then
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k 1/M S 2H[xyl )
11'S2 Sl= 1

s2

P QI P2
11 r(ai+Aj) i+ r(1-bt-Bi) N+ r(c-C t)

N11 1i+2

M N M2

fl r(bi+Bi) I1 r(1-at-A 1 ) 11 r(di-Dt)
1 1

PQ2 3 Q3
fl r(l-d +D) n r(f n r(-ei)

M2+1 N3+1 H3+12x (4.34)

N 2 N 3 N3
a2 r(l-c+Cl) H3 r(ei) R r(l-fl)
1 1 1

Example 4.3: Consider the bivariate probability density function

given by

fx,y(Xy) - k(ax)C e-(ax + Bxy) xy>O

(c,)

0,0,0,1,1,0 a---------; (a,1)
= k 2Ho,010, y

Conditions of Theorem 4.4 are satisfied, and k is given by5'
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( )r-TT ) r(c)

which agrees with constant for the definition of the Kellogg-Barnes Il

distribution.

Another way to arrive at Theorems (4.3) and (4.4) is to

consider the zero-zero moment of a probability density function

k". krH[x,y], x,y > 0, and Ms { rH[x,y] } has no pole at sI - 1 or..-. , s 2

S2 - 1, for r - 1, or at sl - 1 or s2 - -I, for r -2:

00

E[x~yj] -y " kH[x,y] dxdy - 1
0 0

-M { kH[x,y] }
.- '' 2 -0+1

- k M { H[x,y) }

s2=n

-?e solving for k yilds

k =( /tsz H[x,y] )

s2=

from which Theorems 4.3 and 4.4 immediately follow.

L



CHAPTER 5

Transformations of H-function Variates

5.1 General Remarks

This chapter has two distinct parts. In the first part,

various combinations of products, quotients, and powers of dependent

H-function variates are examined. Theorems are presented to show that

the product or quotient of two dependent H-function variates is an

H-function variate. Powers of dependent H-function variates also

result in H-function variates. This result has significance since if

the joint density function of two dependent variates can be

represented as a bivariate H1-function, then the probability density

function of a random variable of the form Z - xPYq is given by a

univariate H-function and may be inverted using the inversion routine

given by Cook (3).

The second part of the chapter examines various combinations

of H-function variates from two or more bivariate 11-function

probability density functions. Theorems are given for products and

quotients of variates from bivariate H-function distributions which

are pairwise independent. These results are also significant in that

by combining these results with the results from part one, a powerful

general theory for finding rational combinations of mixtures of

. dependent and independent random variables now exists.

107
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5.2 Transformations of Dependent H-function Variates

5.2.1 Transformations of 1H[x,y] Variates

As is stated in the following theorem, one of the most

significant properties of the bivariate l-function distribution is

that the probability distribution of products or quotients of its

variates reduces to a univariate H-function. This is similar to

results derived by Carter (3) for independent H-function variates, but

this theorem shows the result holds for dependent H-function variates

as well. It is well known that such a property is not common among

the classical distributions.

Theorem 5.1; If X and Y are H-function variates with joint

probability density function fxy(x,y) where

fxy) = kIH g l xlg 2yJ , x,y > 0
fXY0 otherwise

then the probability density function of the random variable

p,q rational, is given by

-. q- 1 H M N qz Z>

gl 2te iglPg2

z(Z) (5.1)
0 otherwise

96 N
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where for

Case I p>0 q>0

K-k, M-ZMs N-EN., P-ZPQZ ,i=23

n, (ai+Ai-AipAip), i-l ... N1, (ci+Ci-Ciq,Ciq), i-1l... N,

*(f 1+2F 1-Fi(p+q),Fi(p+q)), i-In... N 3

* (a +A -Aip,Aip), i1Nl+1...Pl, (ci+Ci-Ciq,Ciq), i-N2+..

(f +2F1-FiCp+q),Fi(p+q)), i-N3 l.P

2 (bi+Bi-Bip,Bip), i-I ... M1, (di+Di-Diq,Diq), i-1...M 2 '

(e +2E -Eipiq),Ei(p+q)), Ps1

Case II p>O , q(0 , JpJ>JqJ

K-k, M-M +N +M3  N-N +M +N, pop 1+ 2 PQQ+ 2 %

n, (ai+A 1-Aip,Aip), iol ... N1, (1-d1 -Di-EDiq,-Diq), i-i ... m

(f +2F -Fi(p+q),Fi(p+q)), i-I ... N

'p*~( +A (+B-BipBip), i-1l... , (- 1-C1 -+q,-q), i1..

(f +2Fj-Ej(p+q),Epp+q)), i-M3 l.. 3

K-k 2 H14.N2+N3Bi, i-1+...M1, ( 1-H- 2+iq3, -iq+P2+P,.N2

(e+E'EI.)Eipq)

... M3

(b+ BpBp, 4ll.Q,(1CC-ig.q~ - 1..
"I.i 22

(e-2 rip~)E~~),'-'+ 
. 3

CaeIIp", < p<q

K-,4M+ N NN+ M P-lp+3
* ~ ~~ 2 34'p*IN

1
1 2** 3-*-*---*-*.
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nf1  (a1+Ai-Aip.Aip), i-1... N1, (1-d1-Di+Diq,-Diq), i-1l... m2

(1-e 1 -2E -4E (P+q),-Ei(P+q)), i-1...M3

(1-e 1-2E 1+Ei(P+q),-Ei(P+q)), i-M3+1.. .Q3

-2 (bi+Bi-Bip,Bip), i-I... M1, (1-c1 -C14-Ciq,-Ciq), i~l...N2,

(1-f 1 -2F 1+Fi(p+q),-Fi(p+q)), i-1 ... N3

(1-f -2F i+Fi(p+q),-Fi(p+q)). inN 3+1 ... p 3

Case IV p>0 , q<0 , Ipj"'Iqj

H 3  N 3
11 F(e 1+2Ei) aI F(-f 1-2F1 )

p 3  Q3II F(f 1+2F1 ) 11 F(1-e 1-2E1 )
N 3 +1H 3 +1

M- 1 +N, N-N +M, P-P1 Q,-QP,

-, (ai+Ai-AippAip), im1...Nl, (1-d1-Di+Diq,-Diq), ll... M2,

(a 1+A1-AipsAip), i-N1+1...Pi, (1-d1-D1+Diq,-Diq), iinM2+1..Q 2,

* 2 (bi+Bi-Bip,Bip), i-1 ... M1, (1-c1-Ci+Ciq,-Ciq), i1... N2 1
Case (b1 B1- 1p,~p) 1M+1...Ql, (1-c1-Ci+Ciq,-Ciq), i-N2+1..P 2 ,

CaeV p<O , q<O

K-k, H-EN, N-E, Zj QE, 1-1,2,3

Ne5



n,1 (1-bi-Bi+Bip,-Bip), i-1 ... MI, (1d-iDq-i) i-1...MH2 '

n (1-a1-Ai+Aip,-Aip), i-1 ... Nl, (1-ci-C +Ciq,-Ciq), iinl...N 2

*(1-a i-Ai+Ajp9-Aip)* iinN1+1... P1,

(IC_ Cq- iq Msiqsqi-Nfgxgy

fz~z)- M, M p-p~l~s-q~ups-p(X.l

w M _1 (M p -p~l qs-q l vk nqs-q+1yl

fz~~~z)9 - 1 x2(1x(u12 v)x3 ul)( 1 ~ sd 52

vinqs-q+1

hSi
from the uniarat -fucto prbblt dest function (.2

92 (7)lu'2vp(~) 9

h'ia

u.5.p~

ivq-~
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definition, (4.1), and the univariate H-function definition, (3.1),

* - cases I, II, III, IV, and V immediately follow.

Special Cases

Two special cases of this theorem that are of particular

interest are a simple product and quotient of two dependent variables.

The distribution of Z - XY: From Theorem 5.1, p - q 1 1, (5.1)

reduces to

{kH[ [12z , z>O
-.--. p Q n2

fz(z) - (5.3)

0 otherwise

where M=EMi, N=ENit, PEpi, Q-EQ1, i1-,2,3

n,- (fi,2Fi), i-l...N 3, (ai,Ai), iN+l...P1 ,

(ciCi), i-N2+l...P2, (fi,2Fi), i-N3+I..-P 3

n 2  (bi,Bi), i-l...M 1 , (di,Di), i-l...M 2,

S(ed,2E), iul...M 3,(bi,Bi), i-Ml+l.. .Q1 ,

(di,Di), i-M2+l...Q 2, (ei,2Ei), i-M3+1...Q 3

Equation (5.3) above may also be found by applying Equation

(2.23) to the Mellin transform, (3.19), of the bivariate H-function

definition. Recombining like terms and inverting by (3.6), Equation

(5.3) may be obtained directly.

-p,
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For the special case where M =N MP3- 3 O the bivariate

H-function probability density function reduces to a product of two

independent univartLate H-function probability density functions and

(5.3) reduces to the form given by Carter (3:52) for the distribution

of the product of two independent H-function variates.

The distribution of Z - X/Y: From Theorem 5.1, p - 1, q -- 1, (5.1)

reduces to

M +N2,N +M2 Igz lz>

2 P 2  2]

fz(z) -(5.4)

0 otherwise

where
M 3 N3

K k1 1

ni r(f +2F,) nI r(l-e -2Ei
N 3+1 M 3+1

(aiAi), i-Nl+l...Pl, (l-di-2Di,Di), i-M2+1 ... Q2,0

(biBi), i411+l ... Ql, (l-ci-2Ci,Ci), i-N2+1 ... P2,

Equation (5.4) may also be found by applying Equation (2.24)

* to the Mellin transform, (3.19), of the bivariate H-function

definition. Recombining like terms and inverting by (3.6), Equation
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(5.4) may be obtained directly.

For the case M3=N3UP3=Q3 =O, (5.4) reduces to the univariate

H-function probability density function which is the result of the

ratio of two independent H-function variates. For M3=N3=P3 =Q3-0

(5.4) agrees with the form given by Carter, (3:62).

Example 5.1: Consider the Kellogg-Barnes II distribution given by

fx,y(X,y) = 2 exp(-ax - By/x) , x,y>O
a,0>O

(0,1)

2  0,0,1,0,1,0 ax

0,0,0, I,0, I a~y

... ; (0,1)

The distribution of the random variable Z-X/Y may be found with

Theorem 5.1, p 1, q - -1, or from (5.4) directly, and is given by

Z(Z) 2 r(2)H 1 -z (

h+i-h 1i r(2-s)(i z)- ds (5.5)
* 8 2ii h-im

Using Cook's convergence theorem for the H-function, equation

(5.5) may be evaluated using the sum of residues in the right half

plane. Poles of the integrand from r(2-s) occur at s-2,3,4,...
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Evaluating the residues at these points and summing yields

Z residues 2 82 (/z

Recognizing this as the power series for the exponential, the

distribution of fz(z) is then given by

fz(z) - 1 E residues

M Oz
-2 e-/z

which agrees with the results obtained using the Mellin convolution

integral in Example 1.5.

Example 5.2: Suppose the distribution for the random variable Z-Y/X

is desired for X and Y distributed by the Kellogg-Barnes II

distribution given above. Clearly, Theorem 5.1 won't hold in this

case since it does not allow for cases where p<O and q>O. However, if

the Mellin transform is used to map x into s2 and y into sl and an

appropriate H-function identity found, then Theorem 5.1, case iv,

holds. The H-function representation for the Kellogg-Barnes II

* edistribution with such a mapping is given by
0O.

%J0 (0,1)

. '-8Q 2  1,0,0,0, 1,0 a8y ... ;..
"." fX,y(X,y) = cLa 1Ht

OH0,1,0,0,0,1 ,,

(0,1) ;

V,'
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Applying Theorem 5.1, case iv, the distribution for the random

variable Z-Y/X is

2 1 0
fz(z) - - r(2) H Oza 0 1 (0,1)

h+ia !

- 8 . h-. - r(s)(z)- s ds (5.6)

2iih-i-

The distribution fzCZ) can be found by evaluating and summing

the residues of (5.6) in the left half plane. The integrand of (5.6)

has poles at s-O,-1,-2,... Evaluating and summing these residues

yields

residues - £ (-1) (Bz)

i-a
1-0

Realizing that this is the power series for an exponential, the

distribution fz(Z) may be given as

fz(z) = Z residues

"e-aZ

The distribution fz(z) may also be determined directly from the

H-function form of Equation (5.6). Using the special cases given by

W1
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Carter (3), the exponential distribution is given directly by (5.6).

The solution is verified by use of the Mellin convolution integral in

Example 1.5.

Example 5.3: Consider the probability density function given by

f 4a 1+ 0/2 2 2f,(X'y(XY --) x  e -m (x2 + y) x,Y > O

X'Y~xy) - 0+1aB > 0
2

*) Viewing the density function above it should be realized that

the function can be expressed in the form fx(x).fy(y). Restated, X

and Y are independent. While theorems given by Carter (3) may be used

to find the distribution of Z - XY, it is illustrative to treat the

density function above as a joint density and use Theorem 5.1 to find

the density function for the random variable Z - XY.

Applying (2.5), followed by (3.6), to the joint probability

density function above, the H-function representation may be found and

is given by

1,0,1,0,0,0 /a x .....-

Vi', fX,y(xy) = .). 1 H y(5.7)_ . -w r L H ) 0 , I , 0 , l , O O r a . ..

2
(0/2,1/2) ; (0,1/2)

From Theorem 5.1, case 1, p = q 1 1, the distribution of Z = XY is

given by

, . . .' 'i, 4:,.4o,.',r, %, *,., ",. - c. . -. . 4. -. *_ - -.. •.* .-. . , .. *'*-_.._.'v.:.%~o,-. w,• ,.. .* -. - ',.,
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f/z) rr(B - ) H0,2 (8/2,1/2) ; (0,1/2) -

-- s~- +1 s -s
If r(- -)r(y) (az) ds (5.8)

in/ 2wi h-i 2

.' for 1 . From Leg~ndre's duplication formula, (8:5 #15)

-9.

7112r(.I)r(-s-) - 2r(s)2 -s

"hU-

2 2
Equt1o (5.8)cabewitns

f1 (z a r(s)(2oaz) - s dsz( 2wi h-i 2d

i

=2a Hl' [ ,o
0, i (O'l)

which from Carter, (3:45), is just the exponential distribution with

parameter -1/2a. Specifically,

Theorem 1.5. For 1e u l,

--4)3/2 • 2  2
* fzfz(Z) = Ow i 0

* .90
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4 e u + (az/u)2) du

- 2ce-2
a z

which agrees with the solution above using a bivariate H-function

probability density function and Theorem 5.1.

5.2.2 Transformations of 2H[xyJ Variates

Theorem 5.1 shows that the probability density function of

products or quotients of 1H[x,y] variates is a univariate H-function.

The following theorem shows this property is shared by 2H[x,yJ

variates.

Theorem 5.2: If X and Y are H-function variates with joint

probability density function fx,y(x,y) where

fXYx 'y  k = 2H fglxlg2y ] . x,y > 0

fxy(xy) - 0 , otherwise

then the probability density function of the random variable

-. '. z- xpy q

-. p,q rational, is given by

*~ MN
p, qg2 - 1  Hz

fz(z) =2 (5.9)

- L,0 otherwise

.e
5,L

5, ** **.- lA-
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where for

Case I p>O ,q>0, p>q

K-k, M-M +N +M, N-N +M +N3 P-P1 Q+, Q-Ql+P 2+Q3

n, (ai+Ai-AiptAip), inl ... NI, (1-d 1+D i-Diq,Diq), i-1 ... M2 9

* -~~~( (b+-pi,ip,q~ i1..... N1c+~C~,~) 30..N

-(a 1+A 1-AipAip), i1.~..., (1-d+D-Dq,Dq), i1..M 2+1..2

(f (1-ei+F-Eq, -E+q) i 3 +1 . 3

- (bj+Bj-Bjp*Bjp), i-1... M1, (1-ci+Ci-CiqgCiq)g i-1 ... N 2

(e 1-f1 +E-q,i-E+q), iti...M3

(bi+B i-Bip,Bip)g i-M1+1...Ql, (1-ci+Ci-Ciq,Ciq), i-N2 +1 .. p2

(e.E pE4gi -iq , - 1. .Q

Cae1 >,q0 4

K-,MM1+ 2+ -S2b 1PP1Q+QQQ~2p

n,'iS-.,i~ i1..N ,( -iDiDq~q ,'l '2

(1e0i -i vEp+i) . 3
- ~-* 'S -' ' ' *' b 'S S 'S *~ 'S' ''

2 ( Bi Bp Bp ,i l .M ,(-ciC -i .i ) i-1 ..%~'S. ' % S N....2.S.

'S~~~~ .4.4iq -ip Fi ) i-l.4 31S'' WS . ''''''S - - S
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Case III p>O, q>O, pcj

I I

3~k Q3
i (fr ) n r(l-ej)

N 3+1 M3 +1

M -.4+N, N=N +M2 , p-P1 2  Ql+P2

*6-(ai+Ai-Aip*Aip)g J-1 ... Njs (1-d +D -Diq,Diq), iwm1... M2

n1 (bi+Bi-Bip,Bip), i-1 ... M1 , (1-c1+C1-CiqCiq), i-1 ... N,

Case IV p>O, q(O

K-k, H-EMi N-ENj P-EPitQEi i-1,2,3

.31

-(a 1+A 1-Aip,Aip), i-1... 1 , (c-C+Cq,-Cq), i..N 2 ,1.. 2

n (bi+Bi-Bip.Bip), i1... M1, (d1-Di+Diq,-Diq), i-... M2,K2
(b.- +B Bi,*) i-l.*.Ql (d
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fz(z) - H-l[ Mpsp+l,qs-q+l{ fxy(xY) } ]

M H1 [ Mps-p+l,qsq+l{ k2H[glx,g 2y] } ]

and from Equation (3.21)

fz(z) = Ml-1 [kgl-Ug2-Vxl(u)x2(-v)x3(u-v) u-ps-p+l

-v-qs-q+l

-u 
-

u-M
1 [kg lg.vxl(u)x2(v)x3(w) 1L 1 -. LLeJ u-ps -p,+l

v--qs+q-1
-wp (p-q) s-p+q

Sqh+iP(
fZZ) kgP 92  (2.L - x 1 (u)x 2 (v)x 3 (w) (g 1Pg2qz)s ds (5.10)

upS-p+l
v-qs+q-1
w- (p-q)s-p+q

-'.' from the univariate H-function probability density function

definition, (4.1), and the univariate H-function definition, (3.1),

cases I, II, III, and IV immediately follow.

Special Cases

A simple product and quotient of 2H[x,y] variates are

presented as special cases of Theorem 5.2.

The distribution of Z - XY: From Theorem 5.2, case III, p - q - 1,

(5.9) reduces to

- 4 4 ' " .. . .- . : ; : . .. - .. . . '-. : . . - 4 F / :.. .* .. : . ? . . . :r . ; .
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\""1 2H1+N2 N+M 2 F n1
K H P 2 [g+P 2 - n2

fz(Z) - L 2 (5.11)

L 0 otherwise

where

.3 r(e) fl r(1-fi)
'S. K-k 1  1

3  Q
"it r(f) ii r(lei)
- N3+1 M3+1

• :. ) n, -(ai,Ai) , i=I ... NI , (l-di,Di), -.. 2

(a1 ,A,), i-NI+1...P,, (1-di,Di), iM 2+1...Q 2

"-".'in 2  (bt,Bt) , i-1 ... M1, (1-ct,Ci) , t-l ... N2

.-'- ".. .- ( b i ,B i ) , t- M, 1+ l o. ..Q 1 ,  ( 1 -c t ,C i ) , i -N 2 o . 2

Equation (5.11) can also be derived directly by applying

(3.21) and (2.23) to the bivariate H-function distribution definition,

(4.2) and the H-function definition (3.12).

The distribution of Z - X/Y: From Theorem 5.2, case IV, p - 1,

q - -1, (5.9) reduces to

H MN g>O

fQ 92 2
fZ(z) - (5.12)

S" 0 otherwise

% -,

• '.?.

-.

'.% .VV 7V V * 1.
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where K-k, M=EMi, N-ENi, P-EPi, Q=EQi, i1,2,3

n, - (ai,Ai), i1l...N 1, (ci-
2CiCi), i-l...N 2,4°.

(f -2Fi,2Fi), i=I...N 3 , (a,A 1 ), i'NI+1--.P I,

(c i-2Ci9Ci), i-N2+1•..P 2 9 (fi-2Fi,2Fi)9 i-N3+1. •P 3

n2 = (b l 'g l ) , il l ' ' 'M l , (d i -2 D i D i ) ' _ ...'' M 2 1

- '. .~ ~ ~ 1e-EE)9 '=I... M3 9 (bi,Bi), i=I+-.1 I

:- €. (d-2i'D) =M2I"Q2'(e-2Ei,2Ei),'M3+1" .. Q3

..C Equation (5.12) can also be derived directly by applying

(3.21) and (2.24) to the bivariate H-function probability density

definition (4.2) and to the H-function definition (3.12).

Example 5.4 Consider the Kellogg-Barnes III distribution given by

c

f-,y(x-y) - x exp(-ax - 1xy) , x,y>Or~c)a,86>O , 0>2

(c,1)

0,0,0,1,1,0 ax.....-; (1,1)

f(c) 0,0, 1,0,0 1 y

Applying Theorem 5.2, case III, p-q-l, or applying (5.11) directly,

the distribution for the random variable Z=XY is

NO.
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fz(z) - r(c) H 8z
0 1 a (0,1)

- OH Bz (5.13)0 H (0. I

The distribution of fz(z) can be found directly from (5.13) by

realizing that (5.13) is the H-function identity for the exponential

distribution with parameter 1/B as given by Carter (3). Then

fz(Z) - Be- Sz

which agrees with the solution obtained in Example 1.4 using the

convolution integral.

5.3 Transformations for Two or More Bivariate Distributions

In the last section theorems were presented deriving the

distribution for a random variable resulting from some combination of

dependent H-function variates sharing a bivariate H-function

probability density function. This section is concerned with

procedures for finding the bivariate probability density functions of

random variables which are the products or ratios of other bivariate

random variables.

. . . . .* * .* . .
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5.3.1 Tranformations for 1H~x,y) Variates

5.3.1.1 The Distribution of Products

-~Theorem 5.3: If X1 ,Yl; X2,Y2; ... ; X1nY 1  are n pairwise independent

random variables with bivariate probability density functions

f(xy),f( 2 y) ...,9 fn(xnyn) respectively, where

? ~9jj 9~ xjg1 x~g2 yj > 0

(0, otherwise

for j-l,...,n, then the bivariate probability density function of the

random variables

n n

is given by

fz,w) -W

* ni

(rik) 1HZ jElMjE~,mjE~ (Rl1 )z n2 ; 3 z'w>O

s iEP EQlj.EP2j 3ZQ2j1EP3 j1ZQ3 j (flg 2j)w n14

0 otherwise (5.14)

*~% %
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where the Z's and U's are indexed over j and go from 1 to n and

-i = (eijEij), irl ...H 3 J, j-l...n, (eijEij), i-m3j+l...Q 3 J, j-1...n

n= (aijAi ), i=I ... NIJ , J-1 ... n, (a jAl, i=N j+1... Plj, j=1... n

n3 - (cij,Cij), i-l...N 2j, j=...n, (cijCij), i-N2 +1...P 2 j, j-l...n

n4 W (fijF ij), i=...N3j, J-l...n, (f1jj*F 1 j) i-N3 +1 ...P3 o j-1...n

n5 = (bijBij), i=I...Hlj , j-1l... n, (bij,Bij), ifMIj+1 ... Q~j, J-1 ... n

.6 = (d1jDij), i=l...M 2J, j-l...n, (dij,Dij), i "M2j+l...Q 2J, j-1...n

Proof of Theorem 5.3: From Theorem 2.5,

1 n

fz,w(Z,W) - 2 I [ sls2 f4 (x,y ) } ] z,w > 0
il 0

and from the Mellin transform of the bivariate H-function, (3.19), the

bivariate density of Z and W is then given by

fn k 1 s2
it kjg g2j X(s)x 2 j(s2 )x3 j(sl+S 2 ) } ]

nk) - n { S}

J=1 x2 1  j(sl)x 2j(s2)x3j(sl+ 2 )glj g2j

where Xlj(Sl), x2 j(s2 ), and x 3 j(sl+s 2 ) are defined by (3.7), (3.8),

and (3.9) respectively. Recombining like product terms and using

(3.6), equation (5.14) may be written directly.

For the case where Mij=Nij=Pij=Qij=O, i-2,3, (or for i1,3),
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j-l,...,n, the bivariate H-functions reduce to univariate H-functions

and (5.14) reduces to Carter's Theorem 4-1, (3:52), for the

distribution of products of independent H-function variates.

5.3.1.2 The Distribution of Quotients

Theorem 5.4: If X1,2; X2 ,Y2 are two pairwise independent random

variables with bivariate probability density functions fl(xl,yl) and

f2 (x2 ,y2 ) respectively, where

kj iH(gljxj ,g2jyj] 9 xj,yj > 0

f (xy)-

) , otherwise

for J-1,2, then the bivarlate probability density function of the

random variables

Z = X1 /X2  W =Y/Y2

is given by

911 n1
k k2  MI,NIM 2,N2,M3,N3  g z n2

2 1 z,w>O
g1 2 g22  P1 ,Q1 ,P2 1 Q21 P3,Q3  g21  n4922 n4

fzw(zw) =g

0 otherwise (5.15)

where Mi=Mil+Ni2, Ni =Nil+M i2 Pimpil+Qi2, and Qi=Qil+Pi 2, for iI,2,3,

and
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nI - (ej1 ,E1 l), i-i..° 3 1, (1-fi 2-4F1 2,F12), i'1...N3 2

(ll31,+), i3+..-Q31, (1-f1 2 Fi2,Fi2), i-N32+l..P32

n (aiAil), I2i..II, ( -d12-2 12, 1 2), i-M-MIQ2

114 (f1 ,F1 1 , i-... 1 (-b 1 2 1E2 1 2)l i-i... M12,

(f ii)l iN 1i... P11 , (1-bi2-4 2 E 2 ,i 3 +..

biB(ll, ), inNII+l...PII, (1-a12-2A1 2,Bi2), i-N1 2+..QI2

" 3 (d.CDl). i1 ... N21, (1-d1 2-2Di 2,Di2), i-1"'H 2 2

(CICii), i-N2 1+1...P 21 , (1-di 2-2Di2,Di2), i'-M2 2+l...Q 22

Po of Theorem), 5...r31, (l-eo2 52,E 2), '- i . n M32,

(folrFjj). inN31+I ..P31, (I-ei2 -4Ei2,Ei2)( i.M32+22)Q32

=_==(b lBill, u ..-Mill (I-a 22,12), =..NI2

...,-: (b Bgt) i-M l+1... Qll, (1-a12-2Ai29Ai2), i=N1+...-P2
L.12 12

n;- n6  n (dil,Dil), '- ... M21 ,  (I-c 12-2Ci2,C 2), i.I ... N22 ,

' (diDl),i'21+l...Q21, (1-ct12-2Ci2,Ci2), t'N22+l ... P22

-." Proof of Theorem 5.4: From Theorem 2.5, n-2, a1-mbl-1, and a2-b 2=-

i :,?:or from (2.22)

f ZW(z',) M2'[ Ms 1 s2  f1(xl,yl) } M2_s2_s2{ f2(x2 ,y2) }

and from the Mellin transform of the bivariate H-function, (3.19), the

bivariate density of Z and W is then given by

f Z,W(Z w ) M 2  [ klgll g2 1 XS2Sx)1 1 (s1 )x2 l(82 )x31 (sl+s 2 )

Xkg 2 sI-2 s2-2

X k 2912 922 x1 2(2-sl)x2 2(2-s2)x3 2(4-sl-s 2) ]

0.

-, , •
,-.. J

"-..:
" 4:" .. ... .........,
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kk2 2

2 2  Xll(Sl)x21 (s2 )x31 (Sl+s 2 )

g12 92 2

X x12 (2-sl)x 2 2(2-s2)x32 (4-sl-s2 )(g11 /g12) (g2/g22) I

where Xlj(.), x2 j(.), and x3 j(-), j-1,2, are defined by (3.7), (3.8),

and (3.9) respectively. Recombining like product terms and using

(3.6), equation (5.15) is obtained.

For the case where MIj-N ij pijQijwO, i-2,3, J-1,2, then the

bivariate H-functions reduce to univariate H-functions, and (5.15)

reduces to Carter's Theorem 4-8, (3:62), for quotients of independent

H-function variates.

5.3.1.3 The Distribution of Powers

Because of the restriction in the bivariate Hf-function

definition that sI and s2 must have identical coefficients in the

. x3(sl+s 2 ) term, a general H-function of the form 111[z,w] for powers of

H-function variates can not be obtained. However, an H-function of

the form H[z 1P,wl/q , where p,q are rational powers of x and y

respectively, is possible. For the special case where p-q an

H-function of the form 1H[z,wJ is possible.

Theorem 5.5: If X,Y are random variables with bivariate probability
density function fX,y(x,y), where

%
-'

%a
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k Hlglxlg 2 y] I Xl > 0

fx~ y xty) 0 , otherwise

then the bivariate probability density function of the random

variables

z 
O 

_y

p,q rational and p,q > 0, is given by

fz,w(z,w)

K1  P1 Q, 2 Q, 3 3  1/w (fi+(2-q-p)FitFi) w>

0 otherwise (5.16)

where K - kglg 2 q-/pq

Proof of Theorem 5.5: From Theorem 2.3, letting t 1 81 1 t2'32 1

fz,W(zOw) M - [f M ptl-~~t-~ fxX,Yy)

2 1 [Mptl-p+lqt2-q+It k111gxgy

and from equation (3.19)
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fzWZ,W' 2M 1 2  l '2 ' '
2' p 1p

v qt 2 q+l

-ti

fZ,W(z,W) -K (1 2 ff x(UXV)(+) (g, rz)- (g w)t 2 dt dt 2

u=pt1 -p+l
Iv-qt 2-q+l

P1 q1

where K - kg 2 and Uf is the double contour integral for the

inverse Mellin transform as defined by (2.6). Let s 1-Ptl, s2 wqt 2, and

ds ds2 -pqdtldt2, then

fz,W(z,w) K 1 xL..j x(u)x2 (v)x 3 (u+v) (g 1 PZ)li( 2 qw) s2/ ds ds2
pq (1i

us1 ,-p+l
v5 2 -q+l

pq (2ni)2  2 g~/~~~l~ d

uins1 q+l
2

from which (5.16) follows.

For the case where p-q, then from (3.15), the H-function in

equation (5.16) becomes

*(e i+2Ei-2pEi ,pEi)

M1 9N1,M2,N2,M3 N 91 PZ (a i+Ai-pAippAi);(ci+ci-pCi,pCi) w>

K1  P1 ,Ql,P 2,Q2,p3,Q3  92 Pw (fi+2Fi-2pFi,pFi)

(bi+Bi-pBi,pBi); (di+Di-pDi,pDi)
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where K = k(glg 2 )P -

9192)p(5.17)

If (2.23) is applied to (5.17) above, the distribution of

Z'-(ZW) p may be found. It can be shown that such a procedure will

result in a solution identical to that given by Theorem 5.1, case I,

for p-q.

Example 5.5: Consider the Kellogg-Barnes I distribution given by

* 4a +l e-a(x2
fxY(x'y ) (x2 + y2 )8 e + y2) >0

% (18,1/2)

1,0,1,0,1,0 r- x -----

- OrF(+l) 0,1,0,1,1,1 /a y (0,1/2)

" (0,1/2) ; (0,1/2)

Now suppose the bivariate probability density function of

Z = X1/X2, W - YI/Y 2 is desired where XI,Yl and X2 ,Y2 are distributed

O according to the Kellogg-Barnes I distribution given above. Suppose

further that fl(xl,yl) has parameters a1 M 1, 0 - 0, and f2 (x2 ,y2)

has parameters a2  1, 82 - 8. From Theorem 5.4, the bivariate

*- probability density function of Z, W is given by

p

-. O'

'S
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* -% (-1,1/2)

2 H 1,1,1,1,0,1 z (0,1/2) ; (0,1/2) (5.18)2 18(.)

2(8+1) 1,1,1,1,1,1 w (-1-8,1/2)

(0,1/2) ; (0,1/2)

from property (3.15), k = 2, Equation (5.18) above may be written as

(-I,I)

1,1,1,1,0,1 z2  (0,1) ; (0,1)
4 1H (5.19)

2r(+l) 1,1,1,1,1,1 w (-1-,1)

(0,1) ; (o,1)

Recognizing that (5.19) is the H-function form for one of Appell's

hypergeometric functions, special case (3.22), equation (5.19) may be

written as

24 r(0+2)r(1)r(1)Fl(2+Bll;2;_z 2,_w
2 )fz,w(Z,W) = rBl

= 4(0+1) F_(2+0,1,1;2;-z 2

02

where F1 is Appell's hypergeometric function of two variables as

defined in Appendix B. The results obtained using the bivariate

16 H-function and Theorem 5.4 agree with results obtained using Mellin

transform techniques as outlined by Fox (10) and illustrated in

Example 2.3.

0.

- , .... = =, - ,.,. . a x' - ' ': ":"':- .. =. .. ,.-,'..'i,"..z'..' :: ., ,.,- .. '.*,.." ' . ... .'-
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Example 5.6: Consider Kellogg-Barnes II distribution given by

fx,y(xy) = g2 e(Qx + By/x) x,y > 0

(0,1)

0,0,1,0,1,0 ax
S8C 2 10H (5.20)0,0,0,I,0, I a~y ----

.....-- ; (0,1)

From (5.17), the bivariate probability density function of Z-X1/2

W=Y I /2 is given as

(1,1/2)

w 1/2a 0,0,1,0,1,0 ra z (5.21)
fz,w(ZW) a CL H  

(521)
0,0,0,i,0,1i-a w ---

From (3.15), for k-2, (5.21) can represented as

2
f1/2 0,0,1,0,1,0 az - .---fz,w(ZW) 0 OII1I (5.22)

0,0,0,1,0,1 a~w2  (522

.....--- -; (1/2,1)

Equation (5.22) above may also be obtained directly from Theorem 5.5,
ONI

p-q-l/2. Using 1l-function property (3.16), m-n-1/2, (5.22) may now be

expressed as ,,I
hr,5

LQ!
'o!

'PCI
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(0,1)

0,0,1,0,1,0 C z2

fzw(zw) - 48a 2 zw 1H 0W 2  (5.23)

; (0,1)

Comparing the H-function in (5.23) with the H-function in (5.20), the

distribution for Z, W may be written as

fz,w(Zw) = 4Bc 2  w e-(Ou + By/u) 2

4 2 zw e 2 + 8(w/z) 2

The solution obtained above may also be found using Theorem

1.4. Let Z-X112 and W-Y then X-Z2  Y-W , and the Jacobian is

j x/az 3x/aw 1 2z 0 z

ay/az ay/aw 0 2w

From Theorem 1.4,

22
fzw(Z,W) fx,y(Z2,w2 ) IJ

42 zw e- (a z 2 + (w/z) 2 )



137

5.3.2 Transformations for 2Hfxy] Variates

This section presents theorems for transformations of 2H[x,y]

variates. Examples for testing the theorems in this section are

difficult to derive, and unlike the last section cannot be checked by

comparing the results given here to those obtained for independent

H-function variates by previous authors. This does not mean that the

following theoretical results have no practical applications. Rather,

the reverse may be true - this may be the only practical means for

obtaining the distribution for transformations of the type given in

this section.

5.3.2.1 The Distribution of Products

Theorem 5.6: If X1,Y1 ; X2,Y2 ; ...; Xn,Yn are n pairwise independent

random variables with bivariate probability density functions

f1 (xlyl), f2 (x2 ,y2 ), ..., fn(xnyn) respectively, where

Sk , xjyj > 0
"" I k~j 2H[gljxjlg2jYj] , 9 y

-,"-.':f f (xjtyj) =

"-xy- 0 , otherwise

for j-1,...,n, then the bivariate probability density function of the

random variables

n n£:.Z a = Ixj ; w f=l Y
-.5.. iJ l j l

g.n

O, is given by

-.*J:

"*8 " . .",,', .' .".-- ,"% ". ,=''' -.- , ".,-,J w.,' %r . - .- .. ,. , ."' *% * " ."." .- "- . ."..- - , 4" """"""""
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* fz,w(zw) -

n1

(,-' 2H ZMjjqNjj*M 2jEN2jlEM3jlEN3j (Hglj)z  n2 ;n 3  ,>
P*j,ZQljEP2j,£Q2jEP3jEQ3j (ag2j)w n4

n 5 ; n6

0 otherwise (5.24)

where the Z's and 11's are indexed over j and go from 1 to n and

n1 , (eijEij), i 3l...M3 J9 j n...n, (eijEij), iM 3 j+l...Q 3j, jl... n

112 , (aijAij), i-1...Njp j-1...n, (aij,Aij), i-NI+1...P1 j. J-1...n

n 3 - (cijCij), i-...N2j , J-1...n, (cijCij), IN 2 j+l ... P2J J-l...n

n4 - (fij,Fij), i-1...N3j, J-1...n, (fij,Fij) i-N3j +1...P3j' J-1...n

n5 - (bij,Bij), i-1...Mjj, J-1...n, (bijBij), i-,1 +1...Qjj, j-1...n

n6 - (dijDij), i-l...M 2j, j-l...n, (dijDij), i=m 2j+l+...Q 2 j, J-1...n

Proof of Theorem 5.6: From Theorem 2.5,

n

fz,w(ZW 2  [ II M { fx } z,w > 0
2,l S P82

and from the Mellin transform of 2H[x,y], (3.21), the bivariate

density of Z and W is then given by
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n -s

- kg g2j x (s)x(-s2)x3j(sl-s2) }

-=1n n -Sl 2

( 2  [ ()x2j(-(2)x3j(l-s2)glj g2j

where Xlj(Sl) , x 2 j(-s 2 ), and x 3 j(Sl-S 2 ) are defined by (3.7), (3.4),

and (3.20) respectively. Recombining like product terms and using

(3.12), Equation (5.24) may be written directly.

For the case where Mij=Nij=PijQij-O, i-2,3, (or for il,3),

J-l,...,n, the bivariate H-functions reduce to univariate H-functions

and (5.14) reduces to Carter's Theorem 4-1, (3:52), for products of

independent H-function variates.

Comparing Theorem 5.6 with Theorem 5.3, it is seen that the

form of theorems is identical except that the first deals with 2H(x,y]

variates while the second deals with 1H[x,y] variates. It is clear

that a more general theorem can be established for both 1H[x,y]

variates and 2H[x,y] variates. However, this property does not hold

for 1Hjx,y] variates and 2H[x,yl variates when transformations of

ratios or powers of the variates are concerned.

5.3.2.2 The Distribution of Quotients

Theorem 5.7: If XI,y1 ; X2 ,Y2 are two pairwise independent random

variables with bivariate probability density functions fl(xl,yl) and

f2(x2 ,y2) respectively, where
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k j 211[gljxjg 2 jyjl , xjqyj > 0

fj(xjtyj)
f0 ,otherwise

for j-l,2, then the bivariate probability density function of the

random variables

Z x/X 2  Y1/Y2

is given by

911
-z

kk2  M1 ,NIM2 ,N2 ,M3,N3  g12  n2  n3
2 z,w>Og2g 2 2 4

912 922  P1 ,QI,P 2 ,Q2 ,p3,Q3  g21  5 T4

fz,w(zw) g22

0 otherwise (5.25)

where Mi=Mil+Ni2 , Ni-NilMi2, PN M and Qi=Qii+Pi 2, for i-1,2,3,

and

nI , (eil,Ei1 ), i=I...M 3 1, (1-f1 2 qFi 2), i=I...N 32

(eli,Eil), i-M31+1...Q 3 1, (1-fi 2,Fi2 ), i-N32+1...P 32

2 1 (ai1 ,Aii), iI...NII, (l-bi2-2Bi2 ,Bi2 ), i1...M1 2,

(ailAil), I=Nll+l...PII, (1-b1 2-2Bi2,Bi2 ), i-MN2+1...Q 1 2

n3 - (cilCil), i-l...N 2 1 1 (1-di 2 +2Di2 Di2), i=1...M2 2

(Ciicii), i=N21+1...P 2 1, (1-d1 2+2Di2 ,Di2 ), i=M2 2+1...Q 2 2

-4%
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11 4 - (fii,Fil), i-In... N31 ' (1-e 1 2,E 1 2), 'm . 32'

116 - (dii,Dil), i=1 ... M2 1, (1-C. 2 +2C 12 lCi 2), i-l ... N22 1

(d illD il), i-M2l+1...Q2 1, (1-c1 2 +2Ci 2,Ci2)- i-N2 2+1-..P 2 2

Proof of Theorem 5.7: From Theorem 2.5, n-n2, a 1 -b1 -1, and 2bl

or from (2.22)

fz'w(zI H2  s 1M 2 f1(x1,lyl) }M 2 8 1j 2 s2{ f2(x2,y2) I

and fr..a the MellIn transform of 2H~x,y], (3.19), the bivariate

density of Z and W is then given by

fz,w(z,w) M 2 1[ k 1g11 - g2l1 s x ll(s 1 )x2 l(-s 2 )x3 l(s1 -s2)

X k2 1  2r s2-22912 922 12(2-sl)x22(s2-2)x32(-sl+s2)

g1 292 2 2 xll(S)x2l(5'2 )x3l(s5 1 52 )

-s -S2
X x 12(2-s1 )x22(s2-2)x32(-sl+s2 )(g11/g12) 

1(g21 1922) 2

where x lj(')' x2j(-), and X3j('). J-1,2, are defined by (3.7), (3.8),
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and (3.9) respectively. Recombining like product terms and using

(3.12), Equation (5.25) is obtained.

For the case where MiiaNij-PijmQij-O, 1-2,3, j-1,2, then the

bivariate H-functions reduce to univariate H-functions, and (5.25)

reduces to Carter's Theorem 4-8, (3:62), for the distribution of

-,. quotients of independent H-function varlates. Unlike Theorem 5.4,

this property does not hold for i-1,3. This is due to the fact that
s2  -s2

for i-2, the H-function is defined as y instead of y

5.3.2.3 The Distribution of Powers

For the same reasons given in section 5.3.1.3, an H-function

of the form 2H[z,wl is not generally obtainable for rational power

transformations of the H-function variates X and Y. However, an

H-function of the form 2H[zl/P,wl/
q ] is obtainable and for the special

case where p-q an H-function of the form 2H(z,w] can be derived.

Theorem 5.8: If X,Y are random variables with bivariate probability

, density function fx,y(xgy), where

f ,y'x ") k 2 H[glx,g 2 yJ , xy > 0
-." fx,y(xy)=

0 , otherwise

then the bivariate probability density function of the random

variables

ii

0,..,

. . . .',~
*j -* * .,.. ... .- %

-!:i:4
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p,q rational and p,q > 0, is given by

fz,w (zg') -

KHM1 9N1,M2 PN2,M3,N3  g1'z/p ( i+ipi.i;(iC~~ i Z,W>0
K2  P1 Ql,P2 ,Q2,p3,Q3  g2 w 1/q (f 1+(qp)F,F 1 )

(b4+ipiB)(iD~~,i

0 otherwise (5.26)

where K -kglg 2 q-1/pq

Proof of Theorem 5.8: From Theorem 2.3, letting t =81  t WS,

fZ(Z) - M2
1  M ptl-p+lgqt2-q+1l fx.Y(X,Y) I

M M 'f H q.. k2Hrglx,g2 y] I
2 ptl-p+lgqt

2 q+ 
.

and from equation (3.21)

fzwzw 1 [klI SV

* L v-qt -q+l

2

ZW zw - 2 l x(u)x2(-v)x3(u-v) ( 1 )-t(9 2 1)- dtd 2

(. u-pt 1-p+l
V-qt 2-q+l

where K-kg1 - g -1 and His the double contour integral for the
S 92
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A

inverse Mellin transform as defined by (2.6). Let s1 =Pt1 , s2 =qt 2 , and

ds ids 2-pqdtld t2, then

SK 1 /-s2/q
fz,w(Z,W) pq(2j) 2  x l(u)x 2 (-v)x 3(u-v) (glPz) 1(9 2qw) ds ds2

UinS1-p+1
VMS2 -q~l

K 1 5  1/q ) s ds d8""pq(2ri) 2  xl(u)x 2 (-v)x 3 (u-v) (gz )-(S2w ) dsds2
u:s I-P+I

V s 2-q+1
U-Vrs 1-S2+q-p

N, from which (5.26) follows.

For the case where p-q, then from (3.15), the H-function in

Equation (5.26) becomes

4(eipEi)

K2 M1,N1 ,M2 ,N2 ,M3 ,N3  g1PZ  (ai+Ai-PAi,PAl)(ci-el+PCi
V. K 2 

P z,w>O
P2,Q1,P2,Q2,P3,Q3 g2

pw (fipFi)

L(b i+B i - p Bi ,PB i ); (d i - D i + p D I,,PDi )

where K - k(glg 2 )P
1  

(527)

If (2.23) is applied to (5.27), the distribution of Z'=(ZW)P

may be found. It can be shown that such an application will result in

a solution identical to that given by Theorem 5.2, case III.
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Example 5.7: Consider the Kellogg-Barnes III distribution given by

fxy(xgY) xc e-L(ax + Oxy) xy>fX,~x ' ) =r(c)xy>

(c,1)

0,0,091,1,0 ax ; (1,1)
B H (5.28)
(c 2 0,0,1,0,0,1 y y

From (5.27), the bivariate probability density function of ZX
1 /2

W=Y I /2 is given as

(c,1/2)

81/2 0,0,0,1,1,0 i/x z ; (1/2,1/2)fz gw(z'w )  2 0 ,0,1 9 909 ,,3 (5.----
fZ,(Z,) -r~c 210,0, 1,0,0,1 (5.29

From (3.15), k-2, equation (5.29) may be written as

(c, 1)

461/2 0,0,0,1,1,0 az2  ---- ; (1/2,1)
fzw(ztw) r 21 0,01,0,091 w2 (530)

Equation (5.30) may also be obtained by application of Theorem 5.8,

S p-q-1/2. From (3.17), m-n-1/2, (5.30) may be written as

.4

m.:
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fz,w( z 'w ) )zw 20:0:01:1:0 !!Z21 (5.31)" '" 0,0, 1,0,0, 1 6 w 2  ---aJ

Comparing (5.31) with (5.28), the bivariate probability density

function for Z and W may be given by

fz,w(z,w) - rc zw[ ac uc e-(au + Buy)

u-z 2..I. v,,w 2

V=

- 4$(c wz2c+l e-(az2 + B(zw) 2)

The solution obtained above may be obtained through the use of

Theorem 1.4. Let Z-X and W-Y then X-Z, YW 2 , and the Jacobian

is

j 3x/az ax/aw 1 2 0 z
ay/az ay/aw 0 2w

From Theorem 1.4,

fZ,W(Z,w ) - fx,y (z2 w2 ) jII

a 4Ba c wz2c+l e- (az2 + B(zw)
2)S. " c)

N '. " ' . - " ' . '' G '
' , , : ' - ' , ' ,' v ' ' ' , ' . , , - ' ' , - ,

,' ' ' ' % , ., ,% -, : . , " ~ ' , - - ,, , . . . . .' , , ' - : ' . . .
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5.3.3 The Distribution of a Mix of Product and Quotient

In the previous two sections the bivariate distributions of

random variables which were products or quotients of pairwise

independent random variables from two or more bivariate distributions.

While no theorems are presented, this section discusses the bivariate

. density functions for random variables that result as a mix of

products and quotients of H-function variates.

As an example, suppose the bivariate density function of the

dependent random variables Z-X and W-1/Y is desired. From (3.13) it

is clear that if X and Y are 1H[x,y] variates, then the resulting

bivariate density function is of the form 2H[x,yl. Conversely, if X

and Y are 2H[x,y] variates, then the resulting density function is of

the form 1H[x,y]. Theorems for such transformations can be readily

deduced, but are not presented here since they are not readily

generalized to two or more bivariate H-function distributions as is

shown in the following paragraphs.

Now suppose the bivariate density function of the dependent

random variables Z=XX 2 and W=YI/Y2, where XI,Y I ; are pairwise

independent, is desired. From Theorem 2.5, the bivariate density
0

function of Z and W is given by

fz,w(z w ) M K2  [ Hs l s 2  f1(x1,Y9) s 2 ( f2(x2,y2 ) ]

0' If X1,YI ; 2,Y2 are IH[x,y] variates, then from (3.19) the

.
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distribution of Z and W is given by

fz,w(zvw) M2-1 kg 11 l g21 Xs2 (S1 )X21 (s2 )x31 (Sl+S2)

',.'Si-2 s2-2
X k2g12  g2 2  x12 (Sl)x2 2 (2-s2)x3 2(2+s1 -s2 ) ]

Comparing the x3 1(Sl+S 2 ) term and the x32 (2+s1 -s2 ) term, it is clear

that it is not possible to make a change of variables substitution and

meet the restriction in the IH[x,y] definition, (3.6), that terms
01

containing both sl and s2 must have sI and s2 be of the same sign. It

also fails to meet the restriction in the 2Hfxy] definition, (3.12),2

that sI and s2 must be of opposite sign for terms containing both sl

and s2. The same problem occurs if X1,Y1 ; x2 ,Y2 are 2H(x,y]

variates. If, however, X1 ,Yl are 111[x,y] variates and X2,Y2 are

2Hfx,y] variates, then the density function of the random variables Z

and W is representable as a bivariate H-function and will be of the

form 1H[z,w]. Conversely, if X1 ,Y1 are 2H[x,y] variates and X2,Y2 are

iH[x,y] variates, then the density function of Z and W is also

0representable as a bivariate H-function and will be of the form

.1' 2 H[x,y]J

To eliminate the problems described above, a more general

* definition of the bivariate H-function would need to be introduced.

Such a definition would be similar to definition (3.6) but would have

an added x4 (s1-s2 ) term. Given such a definition, it can be shown

that 1H[x,yJ and 2H[x,y] would be special cases of this more general

-e.
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definition. Therefore, Theorems 5.3 and 5.6 would be special cases of

a more general theorem for products of H-function variates.

Similarly, Theorems 5.4 and 5.7 would just be special cases of a more

general theorem for quotients of H-function variates. The primary

difficulty with such a definition is the problem of identifying the

appropriate contours in the inversion integrals to separate poles in

the left and right half planes for the s1 and s2 variables. While it

would seem that such a definition is viable, additional study on this

problem would be required befor the definition could be implemented.

4..
.1~A
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Evaluation of the Bivariate H-function

6.1 General Remarks

In Chapter 5, it is shown that the probability density

function of the product or ratio of two dependent H-function variates

is a univariate li-function. Further, it is shown that the univariate

H-function results from simple algebraic manipulations of the

parameters of the bivariate H-function probability density function.

Then to find the density function of the product or ratio of two

depndent H-function variates, one need merely find the univariate

H-function representation by application of Theorems 5.1 or 5.2. The

computer program given by Cook (5:154-176) may then be applied to give

a numerical evaluation and plot of the univariate H-function density.

For these types of problems, evaluation of the bivariate H-function

density is neither required nor desired.

For problems where the bivariate density function of products

or quotients of pairwise independent variates from two or more

bivariate density functions is desired, evaluation of the bivariate

H-function is required. The procedure for such an evaluation is to

invert the Mellin transform of the bivariate 1-function by applying

the residue theorem in an iterative fashion. The procedure, as

outlined in the following sections, is based on the assumption that

any bivariate probability density function of interest is continuous

in each variable throughout its defined region. While such an

150

a. :i!
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assumption may have some theoretical implications, it provides little

or no practical limitation to the evaluation of bivariate H-function

densities.

By applying the residue theorem iteratively to find the

analytic form of the bivariate probability density function, the

procedures outlined by Eldred (7:112-136) and Cook (5:115-118) apply

to the bivariate inversion techniques as well. However, the

convergence conditions given by Cook (5:61-83) can not immediately be

generalized to the bivariate case. While in most instances, one can

invert the Mellin transform of the bivariate H-function density by

summing residues first in either the left or right half s2 plane

followed by a summation of residues in either the left or right half

SI plane, a set of bivariate convergence conditions must be

established before an analysis of the analytic form of the bivariate

H-function density can be completed.
*!

6.2 Complex Analysis in Multiple Dimensions: (91:25-40)

Definition: A function f(zl,...,zk) in a domain of its

variables is analytic if in some neighborhood of every point

(zl',...,Zk') of the domain it is the sum of an absolutely convergent

power series

n1  nk
. a (z-z') .(Zk-Zx) (6.1)

nFor z kn n1 .. ,

For z jxj+iyj, jl,...,k, the space of k complex variables,

-.j
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Zl,...,z k is the ordinary Euclidean space E2k of the 2k real variables

xl,yl,.,Xk,yk If z' (Zl',...,Zk') is any given point, the

neighborhood of this point will be given by the polycylinder

C(z',r) lzj-zj,l < rj, j-l,...,k

where r. > 0, j-l,...,k

from which

C(O:i() Iji <Rj, j-l,...,k

Theorem 6.1: An analytic function of complex variables is continous

and has partial derivatives of all orders which are likewise analytic,

and for all series (6.1.) we have

nl+...+nk f(z')
1 k an1 ..-nk n nk

k z I  ...3zk
z1  k .Z

Theorem 6.2: If a function f(zl,...,zk), all zi complex, is

continuous in domain D, and if in the neighborhood of every point it

is analytic in each variable, then f(z) is analytic in D.

Theorem 6.3: If f(z) is analytic in D, all zi complex, then each

expansion (6.1) is unique and is valid in every polycylinder C(z',R)

no matter how large, which is contained in D.

The advantage of these theorems is that for a function of

complex variables that possesses the property that it is analytic in

each variable for all combinations of the other variables, then a

% %,
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repeated application of the ordinary Cauchy formula leads to the

formula

Idpi do2 f(Pl''''.'9O
f(z z' -., 1 dp __________

k)...$ dpk (6.2)f~z,  ., k )  (211)k C Pl-'l C2 P2z2 Ck  Pk-Zk

1 2 k

As in the case of one complex variable, and by Theorem 6.1,

since f(z) is analytic in D, equation (6.2) can be differentiated:

nl+...+nk f(z) nl!...n f(p)dpl...dPkf~z). nl!"'nk! ..
nkk~nl+l nk+l (6.3)

az1nI . a nk  (2C 1  Ck (pl-Zl) nl...(P k-zk) (63

6.3 Inversion of the Bivariate -function Integral

The bivariate H-function is presented in Chapter 3 in the form

of a Mellin transform inversion integral and is given as

1 -S -2
jHxyj 2 J- Xl(Sl)X 2 (S 2 )X 3 (Sl+s 2 )x Y dsads2  (6.4)

(2 1i) C 1 C2

where xl(sl), x2 (s2), and x3 (sl+s2 ) are defined by (3.7), (3.8), and

(3.9) respectively. C1 is a contour in the complex sl plane running

from h-i- to h+i- and C2 is a contour in the complex s2 plane running

from w-i- to w+i-. Both C1 and C2 are indented if necessary to avoid

the poles of the Integrand.

From Theorem 6.2, equation (6.4) may be written as an iterated

integral and may be given as

C,!

I!

. -"J. . . . .,. . .- . . . ... -•. . . .. . .... ... . ....... . . . . . ..... .
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:' '.'- 1H~x,y] = .$ l S 1ds 6

- 2 Ix(s)x [ x2 (s2)x3(sl+s 2 )y ds2 ) ds, (6.5)
(27ti) C1  C2

Consider first the inner integral. From the H-function

' definition, poles of I(di+Dis2 ), i-...M2, r(ei+Ei(sl+s2 )), il...M3

lie to the left of C2 and poles of r(1-ci-Cis 2), i-1...N 2,

1(l-fi-Fi(sl+s2 )), i-l...N 3 lie to the right of C2. Poles of a gamma

function occur at nonpositive integer values of its argument. Hence,

the poles for the left half s2 plane may be given by:

di+j
,2ij = i , 0,,2,...

and
ei+Eis 1i+i

s2ij -- - Ei j 0,1,2,...21j Ei

for the factors

M 2  M3
A I (di+Dis2 ) and iA I(ei+Ei(sl+s 2 ))

e -i-I i-I

respectively. Similarly, poles for the right half s2 plane may be

given by

.2ij. , 1  0,1,2,...
21ij c i

and

1-f-Fi s +j

2ij Fi

for the factors

'S.

I.° • %~-.- '
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N N

2 3

A N2  iCis2) and Nr1-fi-Fi(sl+s2))

i-l i-i

respectively.

In evaluating the residues of the poles given above, s, must

be carried as a constant to be treated as a variable in the next

integral. Because of this, an analytic form after inversion in the s

plane must be presented to the sl plane before an analysis of the

location of the poles in the sI plane may be conducted. However, an

analytic form can not be obtained for the general case until a valid

convergence proof, similar to that given by Cook, (3), for the

univariate H-function, Is obtained. However, analysis of the location

of the poles in the sl plane is possible given a specific set of

parameters and will be shown in examples at the end of this section.

While a complete analysis of the location of the poles in the

s, plane is not possible without a convergence proof, the poles from

the xl(s,) term may be identified and are given as

bi+j
alij B j 0,1,2,...

and
1-ai+j

Slij = A 0,1,2,-..

for the factors

I,

' .

*~~~~W 'rU%*~.,.
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Sr(b i+B1 s2) and Ri(-iAs

respectively. The top set of poles are valid for the left half plane

and the bottom set are valid for the right half plane.

Similar results may be derived for 2H~x~yJ.- 2H~x,yJ is

presented in Chapter 3 in the form of a Mellin transform inversion

integral and is given as

2 ~~l -2 x 1 (s 1 )x2 (-82 )x3 (sl-82 )x Y ds lds2  (6)
(2iri) C 1 C2

whrex(S 1) x2(-s2). and X3(sl-s2) are defined by (3.7), (3.4), and

(3.20) respectively. From Theorem 6.2, equation (6.6) may be written

as an iterated integral and may be given as

2 H~~y)2 jICX 1 (s1 )x- [C x 2(-s2 )x3(sl-s 2)y-s ds 2 ] ds, (6.7)
(2111) C1  C2

Consider first the inner integral. From the 211[x,y]

*definition, poles of l'(di-Di) i-1 ... M, 1'(ei+Ei(sl-s 2)), i-l ... M3
lie to the right of C2 and poles of r(1-iCs) -.. 2

r(l-f 1 -Fi(sl-s2))v i-l ... N lie to the left of C. Since poles of a

*gamma function occur at nonpositive integer values of its argument,

the poles for the left half s2 plane may be given by:

A:
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--c

s21 j - , J - 0,1,2,...

" and

- i-F iB 1+j
21j Fi - 0,1,2,...

for the factors

N2  N3
I (lc1 +Cis2 ) and i i(l-fi-F(sl-s2 ))

* respectively. Similarly, the poles for the right half plane are given

by

di+ js~~iB - "-, j - 0,1,2,...
-2ij Di

and
ei +Eis

l+j
;2ij.- i 0,1,2,...

.. for the factors

H2.',"'. 2  M3
f- 1(d i-D s2) and Ai F(ei+Ei(sl-s 2 ))

i-1 i-1

respectively.

Comparing the poles in the s2 plane for 2H[xyJ to those in
the 2 plane for 1H[x,y], it is clear that for cases where 1Hx,y] and

2 H[x,y] have identical parameters the poles for both are exactly

identical except that they are in opposite half planes. Poles in the

"1 plane are exactly identical for both 1H[x,yl and 2H[x,y]. If *2 s

A.

2" lf 2 iw
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replaced by -s2 in (6.7), then the inversion integral may be written

as
H[~ lJ ls~ -Sl [' x2 s2

(212 X(S)x x2(s2 )x3(sl+s 2 )y d 2] ds I  (6.8)
2 1 2

i From (6.8), the poles in both the s t and 82 planes are

. identical for 1 H[x,yJ and 2H[x,y]. Therefore, the residues of 1H[x,yj

- will be identical to those of 2H[x,y] except that 1H[x,y] will have

variables (x,y) and 2H(x,y] will have variables (x,l/y). This could

':' also have been derived directly from (3.13). From this analysis, it
is clear that if a set of convergence conditions can be derived for

1H[x,y], then it will also be valid for 2H[x,y].

All of the bivariate H-function probability density functions

given in section 4.3 were inverted to reproduce their analytic forms

using the techniques outlined above. The exception to this is the

. Kellogg-Barnes I distribution. It can not be inverted for the general

case because specific values of the 6 parameter determine different

'P.- pole sequences. However, once a is set, the residue sequence may be

established and the distribution may be inverted. The Kellogg-Barnes

distribution was inverted for values of b - 1 and a - 2.

The following examples demonstrate the inversion techniques

outlined above. The bivariate gamma and beta distributions are

-/s- demonstrated in Examples 6.1 and 6.2 because they are the most
difficult to invert and because they demonstrate the validity of the

inversion process when fxy(x,y) is positive for only a portion of the

'XN

A5 ...
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positive quadrant. Example 6.3 demonstrates the inversion techniques

for 2 H[x,y] variates.

Example 6.1: Consider McKay's bivariate gamma distribution given by

fxy(xy) (p)i(q) x p -  (Y-x)q- e-ay y>x>O

(p+q-2, 1)

2 1,0,0,0,1,0 ax (p+q-1,1) ;-----

"(P) 1,1,0,0,0,1 ay

/(p-l,1I) ;---

a 2  1 F(p-l+S1 )I(p+q-2+sl+s2 ) a-Sl -2

F(p) (2wi) 2  r(p+q-l+s 1)

(6.9)

From Theorem 6.2, the Mellin transform inversion integral in (6.9) may

be treated as an iterated integral and may be written as

fxY(x,y) =

-S
a_2 1 r(-+9)ax 8

2(p-1+s 1 )(ax) [ . p+q_2+s + 2 )(ay) 2 ds,
r(p) 21 i i(p+q-l+sl) [2'i 1

(6.10)

Consider now the inner integral in (6.10). The integral may be

a. ; 'd '""' o ' ," * °" , % "i" % % . " .. " " ,,. - ,, " ,. .. . . ., ,, , . . . . . . .
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evaluated by summing the residues in the left half s2 plane. The

poles of the integrand are given by

" s = -(p+q-2+S 1 +j) j = 0,1,2,...

Summing over j the residues of the poles given by s2j and using the

property

r (x) - I (x+n)
. x) (x+n-1)(x+n-2)... x

yields

E residues =

'M i' (p+q-l+j+s l+82 j)(sl+s2j+p+q-2+j )(y/a)-s2

j.0 (sl+S2 j+P+q-2)(sl+S 2 j+P+q-1) ... (sl+s2 j+P+q-2+J)

- 2j=-( j+p+q-2+s1 )

sl+p+q+j-2:.;:2: = E(ay)(-I) j

SL

S(ay) s l + p + q - 2  
(-1)j (ay) J

... J.0 ji

Recognizing that the summation is just the power series expansion for
e - a y  the sum of the residues is now given by

. residues (ay)p Cay) e -ay

ri sy

N. '09 * . *$~-
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Substituting the solution for the inner integral back into (6.10)

gives

fa p+ q yp+q-2 e-ay [1+ r(P-1+s1 ) dsl]
X,Y(XDY) FTTP 2-11 r(p+q-l+s1 ) ,y s] (.1

The inversion integral inside the [ I's may be evaluated by summing

-- 'S the residues in the left half sl plane. The poles of the integrand

are given by

- lj - -(p-l+j) , j - 0,1,2,...

Summing over j the residues of the poles given by Slj yields

Z residues =

".: £ r (P+l+slJ+j) (P-l+slij+J) (x/y)-Slij

.-... J-O (p-l+s 1 )(P+sl ) (P-l+s J+J)r(p+q-l+s1l)
sI"l-p-j

Using the property r(q-j) - r(q)/(q-1)(q-2)...(q-j) and recognizing

that

1 ~- 1(-)!
:(q-1)(q-2)... (q-j) (q-l-j)!

S..gives

%,

4. ~... 4 4. 4. *6
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= '"" £resdue = P-1y1-P (-l)J(q-l)!(x/Y)j

-' Eriur(q) J.0 (q-i-j)! j!

But, from (94:1), the series above is just the binomial expansion for

(l-x/y)q -I ,where for convergence, (x/y)2 < 1, or restated, y > x.

* - Then

Z residues P-lyl-p (,_x/y)q
- 1

r(q)

P-I y2-p-q (y_x)q-I

r (q)

Substituting this identity back into (6.11) yields

f_ aP +q - -1ay
fxy(x,Y) = r(p)r(q) p  Y-x) e-a y>x>O

which is identical to the analytic form given in (6.9).

Example 6.2: Consider the bivariate Beta distribution given by

r (pl+P 2+P3) p1-l P2-1 p3-
1

fx,y(xy) r(Pl)r(P2 x y (l-x-y)

r (p1 )p 2 )x (p.
l ot .A-(P l- -P2 )  H

- .l~rp 0,1,0,1,10 y p 2+P3 -
2,1)

."(Pt-t11) ;(P2-1,1).

ICE

A- O.~ .
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r (pl+P2+P3) - 1  1 r(s2+P2-s)y

r(pl)r(p 2 ) 2wi 1 1 - r(sl+s 2+Pl+P 2+P3 _2 )ds2] dsl

where x,y>O and x+y<l. (6.12)

From Theorem 6.2, (6.12) may be inverted by the residue theorem

applied to the s2 plane, treating sI as a constant, followed by

inversion in the s1 plane by residues. Consider the inner inversion

integral. The poles of the integrand are given by

s2j = -(P 2 -1+J) , j = 0,1,2,...

from which the sum of the residues may be given by

Z residues -

-s2j
r (s2J+P2+j)(s 2j+2- +j)y

j-O (s2j+P2 -1)(s 2j+P2 ) ... (s 2 j+P 2 -+J)r(i+s 2 j+Pl+P2 +P3 - 2 )
s2j-l-p2-J

P2 -1+j
O y (-l)J

-0 j ! r(s 1+P l +P3 -1-J)

P2-(.y)i
y

j.O j! r(s1+Pl+P3-1-J)

Substituting this series back into (6.12) yields

. .. . . . . . . .
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fxYXY r(Pl+P 2+P3) yP2-1 If E (Yj~ +llx d
ExY)-r(pl)r (P2) 2Tui j.0 jfr (s1+Pl+p 3-1 J) d 1] (6.13)

The inversion integral inside the [ I's may be inverted by summing the

residues in the left half sl plane. From the integrand of the

inversion integral, the poles of the integrand by

*from which the sum of the residues may be given by

E residues-

iwO j.0j-O ip iPlP--

BlilPl-I

- 1 P1 1+i
- (-y) x (l) i

i-0 j-o i!j! r(P3-i-J)

x E (P3-l1i+J)(-x) i

*r(p 3) i.o J-0 if J!

0 (l-p3,i+J)x
t Y

r(3 E J

where
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r( l-p3+i+j)
(l-p3,i+j) = r (1 -P3

From (B.4), the double series above may be represented as an

- .Appell's hypergeometric function of two variables. The sum of the

residues may then be given as

;: .: pl-l
Z residues, - F2-P 3 ,b,b';b,b';x,y)

where the parameters b and b' are arbitrary real positive constants

and for convergence x+y<l. From Appendix B, special cases, it is seen

that

"..... P3 -
F2(l-P3,b,b';b,b';x,y) - (1-x-y)

--.

Substituting these values back into (6.13) yields

r(pl+P2+P3) Pl-I P2-1 P3-1
fxy(xty) y 12 1 -x-y) 3  x+y<l" -. fx~y~x~y) =r(pl)r(p2)r(p3) x yxyl

which agrees with the analytic form for the bivariate beta

distribution given in (6.12).

Example 6.3: The Kellogg-Barnes III distribution is given by

$ac C c -(ax+Oxy)
fxY(xy) r(-- x , x,y>O

0 a,>0 , c> 2

-0'
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(c ,l)

8 0,0,0,1,1,0 ax - ; (I,,)
-" r(c) 2%g

-(,J.2 0,0, 1,0,0,1 a y

.3. L
1s 2  -sI

8 -lf r(-s )(ty/a) f2i.i r(c+s+s 2)(ax) dS1 ] ds2  (6.14)
r(c) 271i 2) 7 ~2(x s

Inverting first with respect to sl, the integrand has poles at

S - 2c) j - 0,1,2,...

Summing over j the residues in the left half sI plane given by Slj

yields

Sreidue r (c+s 1 +s2++J)(c+slj+s 2+J)(ax)
- i

• Z residues Z

j-O (c+slj+s 2 )(c+slj+s2 +l) ".(c+Slj+s2 +J)
Sl- (s2+c+j)

S 2+c+J s 2 +c+J
-- '-a x (-I)i

-"8 ax) 2 (ax)J (-L) J
OL II= c  Cxc  r-. ;J.0 J'

oj-o

a Cx (ax) e

Substituting this back into (6.14) gives
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fa ea I2i r(- 2 )(Bxy) ds2 ] (6.15)rXYx y ) "t(c) [2vi -2)(x) 2

The inversion integral inside the [ I's may be inverted by summing the

residues in the right half s2 plane. The poles of the integrand are

given by

s2j j j , i - 0,1,2,...

The sum of the residues is then given by

- r(l+J-s2j) (J-s2j)(xy2j
Z residues Z £ i-s'" J.0 (-s2j)(-s2j+ l) ...(-s2J+J) :

s 2j=J !]
M : (Oxy)j (-l)j
j.0 J!

=e-OXYi

Substituting this back into (6.15) gives

*c
Y(x8Y) - xc e-(ax+Bxy)x x  r(c)

This agrees with the analytic form given in (6.14).

S.



CHAPTER 7

Conclusion and Recommendations

The main purpose of this dissertation has been to demonstrate

a practical technique for determining the probability density function

and the cumulative distribution function of products, quotients, or

powers of two dependent H-function variates. This has been

accomplished in section 5.2. While trying to accomplish this purpose,

other contributions have resulted.

0 Fox (10) and Subrahamian (19) show how to find the probability

. density function for a simple product or ratio ot two dependent

variables or of pairwise independent variables from two bivariate

distributions using double Mellin transforms. This work has been

extended in section 2.4 to account for arbitrary rational powers of

the variables. This section also includes extensions of Fox's work to

n sets of pairwise independent variables. To facilitate manipulations

of integral transforms, extensions to the univariate Mellin transform

properties have been established and are presented in section 2.2.

*A second type of H-function which is strongly related to the

first, is defined in section 3.2. Associated properties for both

H-function types are given in section 3.3. While many applications

*• can incorporate the two definitions into one by simply allowing one of

the variables to be inverted in the H-function definition, it is

- simpler in other applications, such as probability and statistics, to

keep the two types of H-functions separated.

168
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A remarkably rewarding area of study has been in the area of

the cumulative distribution function of an H-function probability

density function. First, by section 4.4, the improved Laplace

transform for the univariate H-function given by Cook (5) has been

shown to be unnecessary if the H-function is a probability density

function. Specifically, the Laplace transform of the univariate

H-function distribution given by Carter (3) is sufficient and

.complete. This not only leads to a simplification of the form of the

cumulative distribution function, but it also provides great insight

as to the range of values the parameters of the H-function

distribution can undertake. Second, the cumulative distribution

function of a bivariate H-function probability density function has

been shown to be a bivariate H-function. And, third, the study of the

cumulative distribution function has led to a formula for finding the

constant for the H-function distribution, given in section 4.5.

As stated in the first paragraph, the main thrust of this

dissertation has been to find the density function of a product or

ratio of two dependent H-function variates. A natural extension to

this type of problem is to find the bivariate density function of two

H-function variates which are products or ratios of pairwise

independent variates from two or more bivariate H-function

distributions. This has been accomplished in section 5.3. However,

unlike the univariate H-function combinations, section 5.3 shows that

the bivariate density function of some combinations of H-function
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variates will not result in a bivariate H-function distribution.

p. The following recommendations are made for directions of

future work on bivariate H-function distributions:

1. A set of convergence conditions similar to those given by

A" Cook (5) for the univariate case are needed for the bivariate

H-function. While several results have been obtained on the bivariate

H-function distribution, further significant advancements would be

- difficult without such a set of conditions.

2. Use of the double Laplace transform to find the

probability density function of the sum of two dependent random

variables is another area of possible research. Sneddon (106) devotes

a section to the double Laplace transform and provides some insight to

"* the solution of this type problem.

. 3. An extension of Prasad's theorems (57) to the bivariate

case would allow a researcher to develop a formula for the Laplace

transform of the bivariate H-function. Such a formula -ould prove

useful in the study of sums of dependent H-function variates.

4. In Chapter 6, the analytic form of the bivariate

H-function is analyzed by performing the contour integration

:' iteratively. While this works well for special cases, it is difficult

to utilize this procedure to write a general program to invert theO

bivariate H-function. It is believed that if the location of the two

dimensional poles can be systematically analysed, a more efficient

inversion technique can be accomplished by using the properties of the

050
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multiple Laurent's series given in (6.1).

5. Given a set of convergence conditions, a study of the

various methods of numerical inversion of the H-function should be

considered a must. This work could include a study of the univariate

computational efficiency as well as a generalized code to numerically

invert the bivariate H-function.

6. Another possible area is the use of H-functions to study

probability density functions defined over the entire real line. This

area of research may be applied to univariate as well as the bivariate

distributions. The positive-negative component methods developed by

Epstein (9), Springer and Thompson (18), and Fox (10) should

accommodate such usage, particularly for distributions symmetric about

zero.

7. The application of bivariate H-functions to the fitting of

contours to correlated data is another unexplored realm. Being the

most general of the special functions of two variables, the bivariate

H-function appears to be as suitable for contour-fitting as it has

been for analyzing probability density functions of products and

ratios of dependent random variables.

.

O.
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APPENDIX A: Classical Bivariate Probability Distributions

Normal

fxy(xgy) - I exp 2pxy +y

< (X,y < 0~ p 1,I

Uniform

I) Morgensterm

fX,y(x,y) - 1 + p(2x 1 )(2y - 1)

0 < x,y <I

II) Plackett

fx~yxpy)p((p - 1)(x + y -2xy) + 1}

fxyx,)-[(1 + (p -1)(x + y))2 -4p(p - )xy]3 12

.7

Cauchy

2w 2

fXy ~ <y - , <P p >+
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* Beta

r(p 1 + P2 + P3) P1-1 P2-1 3-
fxY(X,y) y (I x - y)3

r(pl)r(P2 )r( P3)

X, y> 0, x + y

Gamma

I) Mca

fxYXY) a ,p-1 (y - 1 q-1 e-ay
r(p)r(q)

* 11) Cherian

e(- min(xly) P3-1 p1-
1  P2-

1

fxY(x,Y) - -______ f z (n-i) (y-z) eZdz
r(pl)r(P2 )r( P3) (Y

X,y > 0

III) Wicksell - Kibble

-- '1

fxyXy 1 e-(x + y)/(l -C) (CXZ) P+k1

C r lp) k-O kir(p + k)(1 c)2

"-U'0
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-~ Exponential

I) Gumbel

fX,y(x,y) Ql2( + ax)(1 +ay) -a} exp(-x -y -axy)

x,Y > 0

II) Marshall - 01kin

9FXy(x,y) -exp{-Xlx - )2Y + X3max(x,y)l

* x,y > 0

Pareto

f,(Xy) . p(ri + 1)(ab) I~'
XY(bx + ay - a~+

x >a, y> b

Student's t

fxy ty 1 f_ 1 + 1x - pxy y

-m< x,5y <

F-distribution

d~ 2 v1 12 ~(vhI 2 )- (v2 /2)-l

fx,y(xy) -r(v/2)v, v/2 fI V + +
S.*. 1-0 r(v1/2)

*X,y> 0, v-v 0 +11 V,+v
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APPENDIX B: Hypergeometric Functions

Appel's Functions: (21:281-302;7:13-36)

The hypergeometric series of one variable is given as

~n

Fl(a,b;c;x) (a,n)(b,n)x (B•1)
2  n.0 (c,n)n!

The symbol (u,k), where u denotes any number real or complex,

and k is any real integer, is defined by

(uk) - r(u+k) - u(u+l)...(u+k-l), k > 0

and

(u,-k)- - k < 0
(1-u,k)'

Elements a, b, and c are the parameters of the series and x is

the variable of the series. The series is not defined if c is a

non-positive integer, unless a or b is also a negative integer such

that -c < -a or -c < -b.

Appell derived an expression for a hypergeometric function of
z

two variables by considering the simple product of two Gauss

functions.

'i



178

2F(a ,b;c;x)2Fl(a' ,b' ;c' ;y)

- £ £ (a,m)(a'_,n)(b,m)(b',n)xmy n  (B.2)

M0 n-0 (cui)(c',n)m!n!

and replacing, in turn, each pair of products (a,m)(a',n), for

example, by the composite product (a,m+n). By considering the

possible composite product combinations, Appell derived the following

four hypergeometric functions of two variables.

m)(',.) my

Fl(a,b,b';c;x,y) - E E (a,m+n)(bm)(b',n)xmyn (B.3)
mO n-O (c,m+n)m!n!

where for convergence, 1 < 1, IYI < 1

F2(a,b,b';c,c';x,y) = r (am+n)(b'm)(b'n)x y (B.4)
un- n.0 (c,m)(c',n)m!n!

where for convergence, lxi + ly 1

• 3 ( a a ' ,b b ; ~ x~ y - : £ ( a m ) ( a ' n ) ( b m ) ( b ,n )x m y n ( .5

m3=O n=O (c,m+n)m!n!

I I I |

where for convergence, lxI < 1, jyj <1

Vm..

F4(a,b;c,c';x,y) E £ (a,m+n)(b,m+n)x Y  (B.6)
m-O n-O (c,m)(c',n)mln!

where for convergence, Ixl1/' + IYj' < 1
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Special Cases: (12:160)

[4..

Fl(a,b,b';a;x,y) (-x)-b(l -b

F 2(a,b,b;b,b';xy) (1 -x _ Y) -a

-F 2(a,b,b';a,b';x~y) -(1 -x - y)b- -)

F 2(a,b,b';b,a;x,y) -(1 x) Xb-a(1 - x -b

Kap'de Ferioft's Function: (7:29-33)

* Appells functions may be represented as special cases of a

more generalized double hypergeometric function of higher order. This

function was first defined by Kampe' de Feriet in 1921 and is given by

A a1;. ..aA

F B bl,bl';...bB9 bB' xly

D dl,dv; ... dD,dDI

:,0-

A B

!my

d i (ai,m+n) a Li~ m(i,

C D-

' E Spcal is : (:7)

" Fla~~b;ax1)1 (i - xn)-l - yd~)(d',nm

where< 2(BC +D+or A B < C D-+ 1 -and

x + y < min(1,2C )

"- . .... fnto wsfrt eie y ap e e*ti 192 ad iwve by

%Aa;.a

.% %



A1,1D-Ai45 598 ALGEBRAIC FUNCTIONS OF H-FUNCTIONS WITH SPECIFIC33
DEPENDENCY STRUCTURE(U) AIR FORCE INST OF TECH
WRI6HT-PATTERSON AF8 OH S D KELLOGG NAY 84

UNCLSSIFIED FIT/ClI/NR-84-39F/G 12/ NL

flflfflflfflflIND



..-.

-4

.04

1.5111111. 11111.6

LI

~~~~II.. 
II1,-'

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-I963-A



S..

S..

'-S.
p

* pp.

.9.,
-'S

5-.
US,

-I..,

-. 9..

APPENDIX C

V.
5--* Kellogg-Barnes instrioutions

-p
5-

5,.

*4 Vs.5.

5'.;S

-'V

5-

*5*j.*

.9..I
.9.-.
'$5..

S.-V.

180
~1*5,

.1

4.
5-
S. .~.

5
W%,..%C ~ 'S - '- ~

* U * S



ft..

181

APPENDIX C: Kellogg-Barnes Distributions

Kellogg-Barnes Type I distribution

22
f xY(xy) +1 (x2 + y2)8 e-a(x + y xy>O

The probability density function, (p.d.f.), of X for 8-i is given as

* 2 ~2 x2 y2 a~2
fX(x) a: e-aX (x+ )e- dy

3/2 22
- 2gw (x2 + I )eax22a

By symmetry, the same is true for the p.d.f of y.

moments of the distribution

The moments of the distribution may be derived from equations

(1.11). By symmetry, it is clear that px= y and Ox2.Oy2.

O ar48+1 0~f0 x(x2 + y2 )8 e-a(x2 + y2 dxdy

Letting r2 -x 2+y2 , x - rcose, and y = rsinO yields

48+l - r 28+2 -r oee ddr

x wr(R+l) 0 0

Performing the inner integral and letting z-r2 and da=2rdr gives

5%
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0 z0+1/2 e- a z dz
0

U 2r(0+3/2)
wvfc (i(+i)

The variance may be given by

ax2 . f0 $ 0 x2fX y(xy) dxdy - ux 2

4a +1 /2 r2B+3 e- a 2 cos2e dedr -p 2wr(B+I) oox
wr~~l)0 0

t+1 - 4 rr(0+3/2)1
2a W2 a r(o+l)J

From (1.10), the covariance of XY is given by

A!

cov(xy) I I Xyfx y(xy) dxdy -Px y

=4a 0+1 $r20+ 3  -a2 /2

fr rz e- t $  sinO cosO dedr p 0x~
0 0S2

0 8+1 _ 4 rr(0+3/2)12

10 1 'T r(B+1) J

Since the correlation for X,Y is the covariance divided by the

standard deviations of X and Y, the correlation p(x,y) may be given
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%by

w' 0+1-2a1

where

a 4 rrB+3I2) 2

w2 (a+l)J

Kellogg-Barnes Type I1 distribution

fx,y(XY) - Ba2 e-(cx + ix) x,y>O

The p.d.f. of X is given by

fx(x) - 8c2 OM •- (a x + By/x) dy

0

*.. , c2 xem
.. ,.

-'S. *SS

, '.'Simiary, the p.d.f. of Y is gven by

f¥(y) - 8ca2 f' e'(ix + By/x) dy

Recognizing that e- ax is the kernel of the Laplace transform, the

p.d.f. may be given by

-. (y) -L O 2e- y / x

,.a,.
V.

%4

%*5*
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and from (95:146 #25)

fy(y) = 2(0ca) 3 /2 ry Kl( 2(caOy)1/ 2

where Kvtz1 is the modified Bessel function as defined by Erdelyi

(95:371;8:5). The final form for fy(y) can also be derived by taking

the Mellin transform of fx,y(x,y) and then taking the limit as s-41,

(15:27 #3.16).

moments of the distribution

xa2 e-(ax + Sy/x) dxdy
00

= 2/Ca

iy = [$ yoc 2 e-(cx +By/x) dxdy
00

= 2/a8

a22 - 0 2 OCa2 e-(ax + Oy/x) dxdy -x

- C2 f'3 •- ax dx - 4/ca2

0

- 2/a2

'u.',"- , . = . ".'. q .
b

. . . .. . .- w% , ,% . . .. - ,% -.. %
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OY2 ' Y 2 802 e-(Qx + y/x) dd

-~ 0 dxy

_ c2 fm x 3 e-ax dx- 4aa2

82 0 4(8

- 8/ca62

cov(x,y) 0 0 IXY0ca2 e'(c1x +By/x) dxdy - m

- ix 3 e- dx- 4/802
* 80

-2/802

p(X,y) -cov(x~y)
Ga0
xy

a1/2
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Kellogg-Barnes Type III distribution

~~ Bcic -(ax + Oxy) v>

-r(c) a,6>O c>2

ZI I The p.d.f of X is given by

CiC c-I-i

r(c)

Similarly, the p.d.f. of Y is given by

- f~~(y) - ~r(c) 0 ~e~YXd

O cic r(c+1)

-coc (ai + oy)'(C+" I1
moments of the distributionI

IIIc
M* 00 *x*>*' e-Q +p**p OVy V ' -V
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-x f -eoXf dydx 2

F(c) 0

m C/ AI CL

0x 2 .~ Oa xc~ ex 2 e-'xy dydx - 2
y F~c) 0 0

a 2a- xe-3 e-" dx 2C

F c)

0 %4)2c2
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APPENDIX D: Contour Plots of the Bivariate H-function Distribution

The following contour plots were accomplished using the Vector

General 3404 graphic display with the VAX 11/780 computer, VAX/VMS

operating system 3.5, Advanced Graphics Lab., University of Texas.

McKay's bivariate gamma distribution

p+q
fXy(xty) a x P - 1 (Y-x)q- e -ay y>X>Or(P)C~q)a,p,q:>O

(p+q-2, 1)

2  1,0,0,0,1,0. ax (p+q-l,1) ;

r(p) l1,1,0,0,0,1 ay

(p-i,') ;---

Plots of McKay's bivariate gamma distribution are shown in Figure D.1.

\.k

'L4-

'a) a-2.0 , p-q-0.5

Figure D.1 Contour Plot of McKay's Bivariate Gamma Distribution

.4.

*4!.4
-4o
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2 iy

, V

b) ap-q=O.5

2' 'fl,

\ \ Ai

A% A.

.~~~ ... .......................... ................

.-.

2

,.

C ) a-1.0 ,P=0.2 ,qwO.8

Figure D1 Contour Plot of McKay's Bivariate Gamma Distribution

[OAC.. . . - - --
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The bivariate beta distribution

XYr(PI 1+P2)rp3) 1  P t

x,y>0 ,X+79l , PIP 21P3>0.

r(pl-.-P 2-Ip) 10,1,0,0,,0

Plots of the bivariate Beta distribution are shown in Figure D.2.
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Figure D.2 Contour Plot of the Bivariate Beta Distribution
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Kellogg-Barnes Type I distribution

4a 01 (x2 + 2 eCL~x2 + 2 '>

1,0.1,0,1,0 /a X

0,1,0,(0,112 V;C (0,1/2)

Plots of the Kellogg-Barnes I distribution are shown in Figure D.3.
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Figure D.3 Contour Plot of* the Kellogg-Barnes I Distribution
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'..

-, Kellogg-Barnes Type II distribution

2J ct y/x

% fX,y(xy) = 2 e- C - Byx, y>O

(0,1)

1H 0,0,1,0,1,0 
ax ---

0 0,0,0, , 1 a y .....- ; (0,1)

The Kellogg-Barnes II distribution is shown in Figure D.4
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Kellogg-Barnes Type III distribution

fXyXy salc) x C e-L -~ Ox x,Y>0XY(X.Y r-(c ,8>0 , c>2

(c.1)

20,0,0,1,1,0 ax------; (1.1)
- jc 2 0 0 1 0 ,0 1  B --

Plots of the Kellogg-Barnes III distribution are shown in Figure D.5.
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